
QuantumGEP v1 Manual

Manual Version: May 12, 2022
Oak Ridge, 2018



2



Gonzalo Alvarez
Nanomaterials Theory Institute
Oak Ridge National
Laboratory
Oak Ridge, TN 37831
May 12, 2022

DISCLAIMER

tbw
Copyright ©2022,
UT-Battelle, LLC
All rights reserved



2



Contents

1 Preliminaries 5
1.1 Disclaimer and Licensing . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Please cite this work . . . . . . . . . . . . . . . . . . . . . 5
1.1.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Verifying, Building and Running . . . . . . . . . . . . . . . . . . 6
1.2.1 Hash of the latest commit . . . . . . . . . . . . . . . . . . 6
1.2.2 Building and Running evendim . . . . . . . . . . . . . . . 6

2 Arithmetic Example 9
2.1 Finding a Function from Training . . . . . . . . . . . . . . . . . . 10
2.2 Multiple Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Computational Engine Overview . . . . . . . . . . . . . . . . . . 10

3 QuantumGEP 11
3.1 Description of the Problem . . . . . . . . . . . . . . . . . . . . . 11
3.2 QuantumGEP for Ground State . . . . . . . . . . . . . . . . . . 11
3.3 Input File Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Evendim 13
4.1 Procedural Description . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Mutations, Recombinations and Swaps . . . . . . . . . . . . . . . 13
4.3 Interfaces to Primitives . . . . . . . . . . . . . . . . . . . . . . . 14
4.4 Interfaces to Fitness . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.5 The TestSuite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3



CONTENTS

4



Chapter 1

Preliminaries

1.1 Disclaimer and Licensing
evendim is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later ver-
sion. evendim is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details. You should have received a copy of the GNU
General Public License along with evendim. If not, see <http://www.gnu.org/li-
censes/>. The full software license for evendim version 1.0.0 can be found in
file LICENSE.

1.1.1 Please cite this work
evendim is a free and open source computational engine for gene expression
programming. The full software license for evendim version 0. can be found
in file LICENSE. You are welcomed to use it and publish data obtained with
evendim. If you do, please cite this work. Explain How To Cite This Work.
FIXME. TBW.

1.1.2 References
@book{ferreira2006gene,
title={Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence},
author={Ferreira, C.},
isbn={9783540328490},
series={Studies in Computational Intelligence},
url={https://books.google.com/books?id=NkG7BQAAQBAJ},
year={2006},
publisher={Springer Berlin Heidelberg}

5



CHAPTER 1. PRELIMINARIES

}

1.2 Verifying, Building and Running
1.2.1 Hash of the latest commit
Hash of the latest commit is also posted at FIXME

1.2.2 Building and Running evendim
evendim is a computational engine for gene expression programming. There
are many examples to use evendim. To specify an example we need to give
the primitives (or operators) and the inputs or leaves, as well as the training
function. A simple example will be discussed first where the primitives are the
arithmetic primitives in {+,−, ∗, /}, and the training function will be f(x) =
x3 − x.

Required Software

1. GNU C++ or LLVM clang++. Other C++ compilers may also work but
evendim was only tested on these two.

2. The LAPACK and BLAS libraries

3. The Gnu Scientific Library or GSL library

4. PsimagLite (see below)

5. make or gmake is optinal and only needed to use the Makefile

6. perl (may optionally be needed to run some auxiliary script)

Quick Start

1. Use your distribution repository tool to install gcc with support for C++
(or LLVM clang++), the LAPACK and BLAS libraries, the GSL library,
make, perl, and git if you don’t have them.

2. Issue

cd someDirectory/

git clone https://github.com/g1257/PsimagLite.git

git clone https://github.com/g1257/evendim.git

3. Compile PsimagLite with cd PsimagLite/lib; ./configure.pl; make -
j 4

6



1.2. VERIFYING, BUILDING AND RUNNING

4. Now issue

cd evendim/src

cp Config.make.sample Config.make

make

5. You can run the arithmetic primitives with ./gep2 -i 1 -h 5 -p 100 -
t 10 which will run an arithmetic test with one input, head size of a
maximum of 5, population 100 individuals, and for t=10 generations. The
function is in src/Functions/Example1.h and is f(x) = x∗ (x−1)∗ (x+1).

7



CHAPTER 1. PRELIMINARIES

8



Chapter 2

Arithmetic Example

This driver program named gep2 runs different “example” cases consisting of
using GEP to find a function knowning only some inputs and outputs.

The primitives are under Primitives/PlusMinusMultiplyDivide.h, and the
functions under Example1.h, Example2.h and Example3.h

The following command line arguments to gep2 are mandatory.

-i inputs. The number of inputs to the function.

-h headSize. The maximum number of the head or effective gene size.

-p population. The number of GEP individuals to consider in each genera-
tion.

-t generations. The number of generations to run GEP.

The following command line arguments to gep2 are optional.

-e example. The example number to run: 1, 2 or 3. Defaults to 1.

-g genes. The number of genes to be used. Defaults to 1.

-s seed. The seed for the random number generator. Defaults to 1234.

-c constants. The number of GEP constants to use. Default to 0.

-H maximum head size for ADF. ADF stands for automatic defined funtions.
Defaults to 0.

-a adfs. The number of ADFs to use. Defaults to 0.

-n samples. The number of training samples to cache. Defaults to 100.

-v indicates that GEP should be verbose. Defaults to false.

-S indicates that GEP should stop when a perfect individual is found. De-
faults to false.

The options -v and -S take no arguments.

9



CHAPTER 2. ARITHMETIC EXAMPLE

2.1 Finding a Function from Training
You can run the arithmetic primitives with ./gep2 -i 1 -h 5 -p 100 -t 10
which will run an arithmetic test with one input, head size of a maximum of
5, population 100 individuals, and for t=10 generations. The function is in
src/Functions/Example1.h and is f(x) = x ∗ (x− 1) ∗ (x+ 1).

2.2 Multiple Variables
Example3Fitness illustrates the case of a training function with many variables
and consists of a function f(x0, x1, ..., x5) of six variables. The variables are
in the space of valid alphanumeric characters. If x0 is a digit then the function
returns that digit plus one. If not, but if x1 is a digit then the function returns
that digit plus one. And so on until all arguments to f are evaluated. If none of
them are digits, then the function returns -1.

2.3 Computational Engine Overview
The main loop in gep2 is

// total = number of generations
for ( SizeType i = 0; i < total ; ++i)

engine . evolve (i);

The Engine class is templated on a Fitness template that represents the
training class, and determines how fit a GEP individual is. It is also templated
on the Evolution type. The Engine constructor takes an input parameters
object, and an evolution object. Evolution is templated on Primitives, which
represents the GEP primitives or “operators” to be considered. Evolution’s
constructor takes a primitives object, a seed, and an verbose boolean. In this
file, gep2.cpp, Primitives is set to the class PlusMinusMultiplyDivide so that
the primitives are plus, minus, multiply and divide.

Engine::evolve() function starts by considering all parent chromosomes. It
then computes the fitness of these parent chromosomes. It then applies one-
point recombination, two-point recombination, mutation, inversion, and swap
algorithms to all parent chromosomes to generate the descendants for this gen-
eration. It then canonicalizes them and selects the best p chromosomes and
discards the ones with lowest fitness, where p is the population number set from
the input file or the command line.

10



Chapter 3

QuantumGEP

3.1 Description of the Problem
This driver program named quantumGep uses GEP to find a quantum circuit.
There are two usages: (i) the quantum circuit to be found implements a function
known only by some of its input and outputs, and (ii) the quantum circuit to
be found yields the ground state of a known Hamiltonian when applied to an
initial quantum state. The primitives are under Primitives/QuantumCircuit.h,
and consist of one-bit and two-bit gates.

quantumGep takes one mandatory argument: -f filename, with the name of
the input file. It takes the following optional arguments.

-S threads. The number of threads for shared memory parallelization.

-p precision. The precision for printing numbers.

-v indicates that quantumGep be verbose.

3.2 QuantumGEP for Ground State
When Runtype=“GroundState” in the input file, quantumGEP finds circuits
that, when applied to the initial state, yield the ground state of a chosen Hamil-
tonian. Class GroundStateFitness implements the fitness for this case. The
fitness of an individual equals minus the value of 〈v|H|v〉, where |v〉 is the vec-
tor produced by the individual (that is, the quantum circuit) when applied to
the initial state, and H is the Hamiltonian.

3.3 Input File Details
The input file contains parameters of the form name=value; where a semicolon
must be included at the end. Moreover, the first line of the input file must start
with

11



CHAPTER 3. QUANTUMGEP

##Ainur1.0

Input parameters can be divided in engine parameters, which are those that
deal with the GEP algorithm itself regardless of the fitness function used. Then
there are fitness parameters, which for quantumGEP will include those regard-
ing the Hamiltonian for RunType=“GroundState” and also the minimization
parameters. We list and describe them in turn in what follows.

The engine parameters can be specified with Generations=100; in the input
file, and similarly for the others, which are as follows.

Generations The number of GEP generations. Integer. Mandatory.

Population The number of GEP individuals. Integer. Mandatory.

HeadSize The size of the head (that is, the maximum effective gene size). Integer.
Mandatory.

Samples The samples to be cached. Optional. Defaults to 50 and is unused in
quantumGEP.

Threads The number of shared memory threads to use. Optional. Defaults to 1.
Not all fitness classes support paralellization, that is, a number greater
than one here.

Primitives A comma-separated list of quantum gates to consider by GEP. String.
Optional. Defaults to "C,H,P".

EngineOptions A comma-separated list of options. String. Optional. Default to the
empty string.

The EngineOptions are case-insensitive and can be none or more of the
following.

stopEarly Stops quantumGEP as soon as a perfect individual (that is, circuit) is
found.

noncanonical Disables the canonicalization step.

progressBar Prints a progress bar for each generation.

printCompact Prints individuals in compact form.

12



Chapter 4

Evendim

4.1 Procedural Description
The engine constructor creates the initial individuals randomly. Engine::evolve()
function starts by considering all parent chromosomes. It then computes the
fitness of these parent chromosomes. It then applies one-point recombination,
two-point recombination, mutation, inversion, and swap algorithms to all parent
chromosomes to generate the descendants for this generation. It then canon-
icalizes them and selects the best p chromosomes and discards the ones with
lowest fitness, where p is the population number set from the input file or the
command line.

4.2 Mutations, Recombinations and Swaps
The evolve function in the computational engine starts by creating new indi-
viduals, in its first call from the initial population, and in subsequent calls from
the surviving individuals. It does so by using the following four algorithms in
succession: (1) one-point recombination, (2) two-point recombination, (3) mu-
tation, (4) inversion, and (4) swap; all these algorithms were implemented as
detailed in [?], and we briefly review them in the following.

Recombination involves two parent chromosomes and results in two new
individuals. One-point recombination consists of paring the parent chromosomes
side by side, choosing a random point at which the parent chromosomes are split
up, and exchanging the genetic content after the recombination point between
the two chromosomes. Two-point recombination pairs the chromosomes side by
side as before, chooses two random points, and exchanges the genetic material
between these two points, creating two new individuals. A mutation changes
one character of the string representation of the chromosome; in the head any
character can change to any other, so any function can be changed to any other
without regards to the number of arguments. In the tail, terminal or leafs
are changed only into terminal or leafs so that the head and tail structure of

13



CHAPTER 4. EVENDIM

the chromosome is preserved by the mutation. Inversion involves inverting the
characters in the head of the chromosome, and does not affect the tail. evendim
inverts the complete head even though subsets of the head could be inverted
also. Finally, a swap exchanges two characters in the string representation of a
chromosome such that the head and tail structure is preserved.

After the new population has been created, which also includes the surviving
individuals from the previous generation, an optional canonicalization procedure
is applied. For quantum circuits, the canonicalization orders the gates by the
bit it acts on; there is also here an opportunity for symbolic simplifications: for
example, the Pauli matrix gate σz if applied on the same bit twice yields the
identity. More complicated simplifications could be added here as well, based
on commutation rules among operators or gates. Finally, QuantumGEP sort
the individuals by fitness, its definition depending on the problem to be solved,
and discards as many individuals with lowest fitness as needed to obtain the
population supplied in the input file.

4.3 Interfaces to Primitives
This is the interface for Primitives, that is, these are the functions that a
programmer needs to write to implement a new Primitives class to use with
EVENDIM.

virtual const VectorNodeType & nodes () const = 0;

Returns a vector of nodes containing all different nodes.
virtual const VectorValueType & dcValues () const = 0;

Returns a vector of defined constant values
virtual const VectorStringType & dcArray () const = 0;

Returns a vector of defined constant names

4.4 Interfaces to Fitness
The BaseFitness class provides an interface that fitness classes must follow. It
does also provide some basic non-virtual functionality.

virtual RealType getFitness ( const ChromosomeType & chromosome ,
long unsigned int seed ,

SizeType threadNum ) = 0;

Returns the fitness of the passed chromosome, where seed is a seed for a random
number generator, and threadNum is the number of the thread in case fitness
is computed in parallel.

virtual RealType maxFitness () const = 0;

Returns the maximum fitness for this problem.

14



4.5. THE TESTSUITE

4.5 The TestSuite

15


	Preliminaries
	Disclaimer and Licensing
	Please cite this work
	References

	Verifying, Building and Running
	Hash of the latest commit
	Building and Running evendim


	Arithmetic Example
	Finding a Function from Training
	Multiple Variables
	Computational Engine Overview

	QuantumGEP
	Description of the Problem
	QuantumGEP for Ground State
	Input File Details

	Evendim
	Procedural Description
	Mutations, Recombinations and Swaps
	Interfaces to Primitives
	Interfaces to Fitness
	The TestSuite


