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I. REPRODUCING THE NUMERICAL RESULTS.

The DMRG++ code can be obtained with:

git clone https://github.com/g1257/dmrgpp.git

and PsimagLite with:

git clone https://github.com/g1257/PsimagLite.git

To compile:

cd dmrgpp/src
perl configure.pl
(all defaults)
make

To obtain the square curve of Figure 1, which correspond to the Grand Canonical purification scheme for a Heisen-
berg chain with L = 6 sites, first use Fig1_DMRG_GC_L6_entangler.inp as input to generate the infinite temperature
state

./dmrg -f Fig1_DMRG_GC_L6_entangler.inp &> out_entangler_GC.

The ground state energy of the entangler Hamiltonian can be monitored with

grep Energy dataGS.txt.

Second, restart with this result using Fig1_DMRG_GC_L6.inp as input to evolve in imaginary time

./dmrg -f Fig1_DMRG_GC_L6.inp &> out_GC.

The local energies at temperature T can be obtained with a Perl script getEnergy.pl

perl getEnergy.pl betaprime time < out_GC,

where betaprime should be substituted by the actual numerical value β′ = β/2 = 1/2T . To obtain the circle curve
of Figure 1, corresponding to the Canonical purification scheme, first use Fig1_DMRG_C_L6_entangler.inp as input
to generate the the infinite temperature state; then, restart with this result using Fig1_DMRG_C_L6.inp as input to
evolve in imaginary time.

The input files for generating Figure 2 of the manscript can be obtained by generalizing the inputs discussed above.
Using the same procedure outlined for the Heisenberg model, in order to obtain the curves of Figure 3 corresponding

to canonical scheme C1 and C2 for a L = 6 sites t-J model, first use

Fig3_DMRG_C1_L6_entangler.inp,
Fig3_DMRG_C2_L6_entangler.inp

to generate the maximally entangled temperature states for the C1 and C2 Canonical purification, respectively. Then,
restart the result obtained using

Fig3_DMRG_C1_L6.inp,
Fig3_DMRG_C2_L6.inp,
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as inputs to evolve in imaginary time.
Finally, we provide the input file for generating the infinite temperature maximally entangled state of type C2 for

a L = 6 sites chain Hubbard model

Fig4_DMRG_C2_L6_entangler.inp.

One can obtain the (dark green) empty circles curve in the inset of Figure 4 by evolving

./dmrg -f Fig4_DMRG_C2_L6.inp &> out_C2.

The scaling analysis performed in the main panel of Figure 4 can be obtained by generalizing the inputs provided
above.

II. PROOF OF OBSERVATION (3) IN APPENDIX A

Observation 1. For any Hamiltonian with convex energies and an extensive canonical partition function, at finite
temperature, and in the thermodynamic limit, the average energy in the canonical ensemble is the same as the one in
the grand canonical ensemble.

Proof. Let M be the number of sites, considering spin and orbitals, such that the maximum number of electrons that
the system can hold is M . Let nT be the target density of electrons, and let µM be such that 〈N〉GC/M = nT .
Let ZC,M,N (β) be the canonical partition function for N electrons and ZGC,M,µM

(β) the grand canonical one at µM .
Because the canonical partition function is extensive, in the thermodynamic limit we have ZC,M,N (β) = zMC,n, where

n = N/M .

lim
M→∞

ZGC,M,µM
(β) = lim

M→∞

1∑
n=0

(zC,nexp(βµMn))
M

(1)

Moreover, zC,n has a maximum at n = nT , and because the energies are convex this maximum is unique. In the
thermodynamic limit then

lim
M→∞

ZGC,M,µM
(β) = lim

M→∞
(zC,nT

exp(βµMnT ))
M
, (2)

which, up to a constant, is equal to the canonical partition function zMC,nT
.


