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I. HEISENBERG MODEL ON A CHAIN: COMPARISON WITH EXACT TWO-SPINON RESULTS

In this section, we compare the Krylov method with the exact two-spinon results obtained in ref. 1 for an antifer-
romagnetic Heisenberg chain. We focus on a particular cut at k = π/2 of the dynamical spin structure factor. The
figure shows a good agreement between the analytical and numerical results. In the DMRG simulations, we increase
the system size from L = 64 to L = 128 sites and reduce the broadening η from 0.05 to 0.025. Larger systems sizes
and smaller broadenings η are needed to converge to the exact results.
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FIG. 1: (Color online) Cuts at k = π/2 for the spin dynamical structure factor for a Heisenberg chain. The 2-spinon exact
results (solid black line) are calculated from expression in ref. 1. Data refers to the right y axis. The DMRG data (dotted and
dashed lines) refer to the left y axis and are obtained on a chain of L = 64 and L = 128 sites, using m = 1000 states. The data
in both vertical axes is in arbitrary units.

II. COMPARISON OF HUBBARD AND HEISENBERG MODELS USING LADDER GEOMETRIES

In this section, we complement the study of ladders reported in the main text by analyzing the cuts of the two
branches of the magnetic excitation spectrum at the special case kx = π.

As observed in fig.6 (a) of the main text, a spin gap is visible already for U = 1. This significantly affects the shape
of the spectrum of the inter-band electronic spin excitations; see the dashed (red) curve in panel (a) of fig. 2. In fact,
the magnetic spin excitations develop a pronounced (π, π) peak at ω/(4t) ' 0.01 already for U = 0.5. Contrary to
the inter-band spin excitations, the intra-band spin excitations are not much affected by the electronic correlations:
the (red) dashed curve in panel (c) of fig. 2 shows just a shift to lower frequency, while the spectral shape feature is
only slightly distorted.
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FIG. 2: (Color online) Cuts of the spin dynamical structure factors S(π, π, ω) (panels a and b) and S(π, 0, ω) (panels c and d)
for a system with L = 32 × 2 sites as a function of ω/(4t) (panel a and c) and ω/Jeff (panel b and d), at different values of U .
As in the chain case, we have assumed Jeff = 4t2y/U . In the DMRG simulations, η = 0.02t has been considered for the Hubbard
model while η = 0.02J for Heisenberg, with ∆ω = 0.01 and with up to m = 1000 DMRG states kept.

At U = 2, the (π, 0) cut of the magnetic excitation spectrum starts to be significantly modified by the effect of the
electronic correlations. The entire non-zero spectral features of intra-band excitations becomes further shifted to lower
frequencies, while a double peak structure starts to appear as in the chain case. The high-energy peak resembles the
non-interacting part of the excitation band, while the lower energy peak at ω/(4t) ' 0.5 points toward Heisenberg-like
behavior resembling the two-triplet bound state peak. In the (π, π) cut of the spectrum, an increase in the spin gap
is visible, while the effects of the spectral redistribution point to a higher magnetic (π, π) peak.

For U = 3 and U = 4, the spectral weight redistribution to lower frequencies continues. In the (π, 0) cut of the
magnetic spectrum—the (blue) dashed-dotted and (cyan) dotted line in panel (c) of fig. 2— a well defined (π, 0)
peak appears at ω/(4t) ' 0.4 for U = 3, and at ω/(4t) ' 0.35 for U = 4. Yet the high-energy peak, characteristic
of the non-interacting case, appears barely visible in the high-frequency tail around ω/(4t) ' 0.75 for U = 3, while
it disappears completely for U = 4. Recall that in the non-interacting case, this high-energy peak had of the same
spectral weight as the lower peak in the U = 2 case.

In the ky = π portion of the spectrum, the same behavior as observed for the U = 1 case can be seen again for
U = 2 and U = 3, and in general up to U = 16, the highest value of U we have investigated; see panel (a) and (b) of
fig. 2. The spin gap increases together with the magnetic (π, π) peak height. The results are shown to converge to
the spectrum obtained in the Heisenberg model case, once we plot them according to the ratio ω/Jeff. In panel (d)
of fig. 2, the ky = 0 cuts of the spectrum for U > 4 show similar convergence: the results get closer and closer to the
Heisenberg model calculations with increasing U as expected.

III. SUPPLEMENTAL: REPRODUCING THE NUMERICAL RESULTS.

The DMRG++ code can be obtained with:

git clone https://github.com/g1257/dmrgpp.git

and PsimagLite with:

git clone https://github.com/g1257/PsimagLite.git

To compile:
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cd PsimagLite/lib
perl configure.pl
(you may now optionally edit Config.make)
make
cd ../../dmrgpp/src
perl configure.pl
(you may now optionally edit Config.make)
make

To compute the spectrum shown in Figure 1, say panel c, corresponding to the dynamical spin structure factor of
a Hubbard chain with L = 64 sites and U = 2t, first use the input file input_L64_Hubbard_chain.inp to calculate
the ground state of the system:

TotalNumberOfSites=64
NumberOfTerms=1

DegreesOfFreedom=1
GeometryKind=chain
GeometryOptions=ConstantValues
Connectors 1 -1.0

Model=HubbardOneBand
hubbardU 64 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
potentialV 128 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SolverOptions=twositedmrg
Version=version
OutputFile=DataGS.txt
InfiniteLoopKeptStates=64
FiniteLoops 5
31 1000 0 -62 1000 0
62 1000 0 -62 1000 0
62 1000 0

TargetElectronsUp=32
TargetElectronsDown=32
TruncationTolerance=1e-8

Above, a maximum of m = 1000 states are kept in the simulation by keeping the DMRG truncation error below
10−8. One can run the code executing the command

./dmrg -f input_L64_Hubbard_chain.inp.

Once the ground state |Ψ0〉 has been obtained, restart from ground state calculations. In order to calculate the
dynamical structure factor in frequency space

Sj,c(ω + iη) = − 1

π
Im

[
〈Ψ0|Sz

j

1

ω − Ĥ + E0 + iη
Sz
c |Ψ0〉

]
, (1)

restart from the ground state calculation with input input_L64_Hubbard_x.inp for each desired ω = x value of the
spectrum:

TotalNumberOfSites=64
NumberOfTerms=1

DegreesOfFreedom=1
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GeometryKind=chain
GeometryOptions=ConstantValues
Connectors 1 -1.0

Model=HubbardOneBand
hubbardU 64 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
potentialV 128 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

InfiniteLoopKeptStates=64
FiniteLoops 3
-62 1000 2 62 1000 2 -62 1000 2

SolverOptions=CorrectionVectorTargetting,restart,twositedmrg
CorrectionA=0
Version=version

TruncationTolerance=1e-8

OutputFile=datax.txt

DynamicDmrgType=0
TSPSites 1 31
TSPLoops 1 1
TSPProductOrSum=sum
CorrectionVectorFreqType=Real

CorrectionVectorEta=0.05
CorrectionVectorAlgorithm=Krylov
TridiagEps=1e-7
TridiagSteps=1000

RestartFilename=DataGS.txt

GsWeight=0.1
CorrectionVectorOmega=x

TSPOperator=raw
RAW_MATRIX
4 4
0 0 0 0
0 0.5 0 0
0 0 -0.5 0
0 0 0 0
FERMIONSIGN=1
JMVALUES 0 0
AngularFactor=1

Notice the restart and CorrectionVectorTargetting flags in the SolverOptions of the code. In eq. 1, Ĥ and
E0 represent the Hamiltonian and the ground state energy of the Hubbard model. User must substitute x with the
value of desired value ω. This input restarts the DMRG simulations applying to the ground state |Ψ0〉 the operator
Sz
c , represented explicitly at the bottom of the input as

TSPOperator=raw
RAW_MATRIX
4 4
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0 0 0 0
0 0.5 0 0
0 0 -0.5 0
0 0 0 0
FERMIONSIGN=1
JMVALUES 0 0
AngularFactor=1

at the center of the chain c = L/2 − 1 = 31 using the flag TSPSites 1 31. The code calculates then the correction
vector

|x(ω + iη)〉 ≡ 1

ω − Ĥ + E0 + iη
Sz
c |Ψ0〉 (2)

for each frequency ω = x and η = 0.05. The expression in eq. 1 is calculated as

Sj,c(ω + iη) = − 1

π
Im

[
〈Ψ0|Sz

j |x(ω + iη)〉

]
(3)

with

./dmrg -f input_L64_Hubbard_x.inp ’z’,

where the option ’z’ means that we are measuring in situ the spin operator Sz
j on all the sites of the chain. In the

output file runForinputx.cout, they are going to appear lines such as

j re 0 <PSI|z|P2> <PSI|P2>
..
j im 0 <PSI|z|P3> <PSI|P3>

where |P2> and |P3> represent the real and imaginary part of the correction vector |x(ω + iη)〉, |PSI> the ground
state, while re and im the real and imaginary part of the correlator 〈Ψ0|Sz

j |x(ω + iη)〉. Collecting the data for all
sites j allows us to calculate the S(k, ω) in frequency momentum space.

Above, the correction vector is calculated with the Krylov method presented in the main text; notice the lines

CorrectionVectorAlgorithm=Krylov
TridiagEps=1e-7
TridiagSteps=1000

where a maximum of 1000 iteration steps is set keeping the Lanczos error below 10−7. The Krylov method for the
computation of the correction vector has been discussed in ref. 2. We finally provide the input for computing the
ground state for a Hubbard ladder input_L64_Hubbard_ladder.inp with L = 48×2 site at half-filling and tx = ty = t
and interaction strength U = 16t

TotalNumberOfSites=96
NumberOfTerms=1

DegreesOfFreedom=1
GeometryKind=ladder
GeometryOptions=ConstantValues
Connectors 1 -1.0
Connectors 1 -1.0
LadderLeg=2

Model=HubbardOneBand
hubbardU 96 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
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potentialV 192 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SolverOptions=twositedmrg
Version=version
OutputFile=DataGS.txt
InfiniteLoopKeptStates=64
FiniteLoops 5
47 1000 0 -94 1000 0
94 1000 0 -94 1000 0
94 1000 0

TargetElectronsUp=48
TargetElectronsDown=48
TruncationTolerance=1e-8

The dynamical spin structure factor for this system was shown in panels (a) (b) of Fig. 5 and can be obtained similarly
along the same lines explained above. Other inputs for the Heisenberg model case are discussed in the supplemental
material of ref. 2.
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