Multiple States in the Density Matrix Renormalization Group with The Singular Value Decomposition

E. F. D'Azevedo, ${ }^{1}$ W. R. Elwasif, ${ }^{1}$ N. D. Patel, ${ }^{2}$ and G. Alvarez ${ }^{3}$
${ }^{1}$ Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
${ }^{2}$ Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
${ }^{3}$ Computational Sciences and Engineering Division and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

(Dated: December 4, 2018)

I. KRONECKER PRODUCTS

This appendix lists a number of special properties of Kronecker Product (KPs). Details for the derivation can be found in [1].

Let matrix A be $r_{A} \times c_{A}$ and matrix B be $r_{B} \times c_{B}$, then $G=A \otimes B$ has shape $\left(r_{B} r_{A}\right) \times\left(c_{B} c_{A}\right)$ given as

$$
A \otimes B=\left(\begin{array}{cccc}
a_{11} B & a_{12} B & \ldots & a_{1, c_{A}} B \\
a_{21} B & a_{22} B & \ldots & a_{2, c_{A}} B \\
\vdots & \vdots & \vdots & \vdots \\
a_{r_{A}, 1} B & a_{r_{A}, 2} B & \ldots & a_{r_{A}, c_{A}} B
\end{array}\right)
$$

The transpose of a KP is the KP of the transpose of its parts: $G^{t}=A^{t} \otimes B^{t}$. The KP is associative: $A \otimes(B \otimes C)=$ $(A \otimes B) \otimes C$. Moreover, the matrix product of KPs can be evaluated as the KP of matrix products

$$
(A \otimes B)(C \otimes D)=(A C) \otimes(B D)
$$

KPs admit an efficient evaluation of matrix-vector multiplication that is of importance to DMRG:

$$
\operatorname{vector}(Y)=(A \otimes B) \operatorname{vector}(X)=B X A^{t}
$$

where X can be reshaped as a $c B \times c A$ matrix and Y as $r B \times r A$ matrix. Let e_{A} denote the number of non-zero elements of A, and similarly for B. The computation of $Y=B X A^{t}$ can be evaluated as (i) $Z=B X$, then $Y=Z A^{t}$ using $2\left(e_{B} c_{A}+r_{B} e_{A}\right)$ or $2 r_{B} c_{A}\left(r_{A}+c_{B}\right)$ operations; (ii) $Z=X A^{t}$, then $Y=B Z$ using $2\left(c_{B} e_{A}+e_{B} r_{A}\right)$ or $2 r_{A} c_{B}\left(c_{A}+r_{B}\right)$ operations; (iii) in the special case where matrices A and B are very sparse, then explicitly evaluating $\operatorname{vector}(Y)=(A \otimes B)$ vector (X) will require $2\left(e_{A} e_{B}\right)$ operations. Depending on the matrix shapes and sparsity, the most efficient method should be selected.

II. REPRODUCING THE NUMERICAL RESULTS.

The DMRG ++ computer program can be obtained with:

```
git clone https://github.com/g1257/dmrgpp.git
```

and PsimagLite with:

```
git clone https://github.com/g1257/PsimagLite.git
```

To compile:

```
cd PsimagLite/lib
perl configure.pl
(you may now optionally edit Config.make)
make
cd ../../dmrgpp/src
perl configure.pl
(you may now optionally edit Config.make)
make
```

The documentation can be found at https://g1257.github.io/dmrgPlusPlus/manual.html or can be obtained by doing cd dmrgpp/doc; make manual.pdf.

The data needed for all the figures is in RawData.tar.gz.
To reproduce figure 2 , a ground state run needs to be made with ./dmrg -f gs32x2.inp where all inputs are in RawData.tar.gz. After the ground state run has finished, the batches and inputs for all frequency runs can be generated with

```
cp /path/to/dmrgpp/scripts/OmegaUtils.pm .
cp /path/to/dmrgpp/scripts/manyOmegas.pl .
perl manyOmegas.pl InputDollarized32x2.inp batchDollarized.pbs test
```

that can be launched by replacing test with submit, and by selecting the correct run for either A^{+}or A^{-}in batchDollarized. When all frequency runs have finished, the post-processing to obtain the .pgfplots files is
cp /path/to/dmrgpp/scripts/procOmegas.pl .
perl procOmegas.pl -f InputDollarized32x2.inp -p -z
For A^{-}, runs need to be repeated with input InputDollarized32x2upper.inp and results added to those of A^{+}.
This supplemental will also be available at https://g1257.github.io/papers/84/.
[1] C. F. Van Loan, Journal of Computational and Applied Mathematics 123, 85 (2000).

