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Why the Density Matrix Renormalization Group?

Lx

Ly

Because it is an accurate method
for 1D and quasi-1D.1 The DMRG
is a method to obtain ground state
and beyond-ground-state properties
of quantum Hamiltonians.

The DMRG is systematically exact,
and its error is controlled by the
parameter m, the number of kept
states. To achieve constant error, on
a Lx × Ly ladder, …

…the number of kept
states m must increase
linearly in Lx , and expo-
nentially in Ly

1 White, 1992, White and Noack, 1992
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Why DMRG beyond ground state?

In the FWP, we proposed to go beyond ground
state with the DMRG, in order to calculate static
observables at finite temperature, real frequency
observables at zero temperature, and …

… real frequency observables at finite temperature, …

…, which is arguably a frontier in DMRG. This
overview today thus focuses on beyond ground
state properties.
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Finite Temperature: Duplicate Sites

〈Ô〉 = Tr(e−βHÔ)
Tr(e−βH)

β = 1/T (1)

Replace the trace Tr by a single state |φ〉 ≡ |ψ(T =∞)〉

〈Ô〉 = 〈φ|e
−βH/2Ô e−βH/2|φ〉
〈φ|e−βH |φ〉

(2)

Eq. (2) is exact but in larger space

Ancilla site or orbital

Physical site or orbital
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〈Ô〉 = Tr(e−βHÔ)
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Statics at Finite Temperature: Ancilla Sites

The infinite temperature state on two composite sites is

|ψ2 spins(∞)〉 = 1

2
(| ↑ ↓〉+ | ↓ ↑〉)⊗ (| ↑ ↓〉+ | ↓ ↑〉), (3)

The first entry of the ket refers to the state of the physical site
and the second entry in red to its ancilla.
Nocera and Alvarez, 2016b

|ψ(T )〉 = e−βH/2|ψ(∞)〉 β/2←→
√
−1 t . (4)

〈O〉 = 〈ψ(T )|O|ψ(T )〉/〈ψ(T )|ψ(T )〉, (5)

Verstraete et al., 2004, Zwolak and Vidal, 2004, Feiguin and White, 2005,

Takahashi and Umezawa, 1975, Nocera and Alvarez, 2016b
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Statics at Finite Temperature: Canonical Space

Consider the Heisenberg model without a magnetic field. The
canonical state should then have Sztot |φ〉 = 0, Szph.|φ〉 = 0,
Szan.|φ〉 = 0; it conserves the spin of the physical and ancilla
chains separately, leading to

|φ2 spins(∞)〉 = 1√
2

(
| ↑ ↓〉 ⊗ | ↓ ↑〉+ | ↓ ↑〉 ⊗ | ↑ ↓〉

)
. (6)

This state is exponentially large.

So, how do we represent it in DMRG?

Version 1.0 G. Alvarez
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Statics at Finite Temperature: Entangler Hamiltonian

How do we represent the infinite temperature |ψ(∞)〉 state in DMRG?

We find a Hamiltonian whose ground state is |ψ(∞)〉.
For the Heisenberg model, this entangler Hamiltonian is

Hspin
C = −

∑
i 6=j

Γ†
i Γj + h. c., where Γ†

i = S+i S
−
a(i). (7)

Connects all points Acts on physical and ancilla sites

|ψ(∞)〉C =
1√
N ′

P(Szph.=0)

[
L−1∏
i=0

∑
σ=↑,↓

|σσ̄〉

]
,

whereN ′ is a normalization constant, P(Szph.=0) is the projector operator such

that the z-component of the total spin of the physical (ancilla) chain is conserved

and equal to zero: Szph.|ψ(∞)〉C = Szan.|ψ(∞)〉C = 0.
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Statics at Finite Temperature: Two Steps

Step 1 (Fast): Find the ground state |ψ(∞)〉C of Entangler
Hamiltonian. This is the infinite temperature state of the
composite physical and ancilla Hamiltonian.

Step 2 (Slow and Serial): Reach finite temperatures β > 0 by
time evolving with Ĥ = Ĥph. ⊗ 1an. acting on physical Hilbert
space only: |ψ(T )〉 = e−βH/2|ψ(∞)〉. Observables are
computed with 〈O〉 = 〈ψ(T )|O|ψ(T )〉/〈ψ(T )|ψ(T )〉,

Remark I: There is one state at each finite temperature T .

Remark II: Excited states are not directly computed.

Nocera and Alvarez, 2016b
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Methods for Dynamics at Zero Temperature with the DMRG2

Time evolution, and then Fourier transform into ω
White and Affleck, 2008 Preferred method of Steve White.

Correction vector Kühner and White, 1999 Pati et al., 1999

Kühner et al., 2000. Scalable. Discussed in the next slides.

Please read our work.

Nocera and Alvarez, 2016aD

1First method that is now superseded: continued fraction approach Hallberg, 1995. Other methods include
Jeckelmann, 2002, Dargel et al., 2011, Dargel et al., 2012.
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Dynamics at Zero Temperature

We are interested in the calculation of the Green’s
function

G(ω) = − 1

π
〈ψ0|B̂

1

ω + iη + E0 − Ĥ
Â|ψ0〉,

|ψ0〉 is the ground state of some Hamiltonian Ĥ with
ground-state energy E0, Â and B̂ are operators associated
with the dynamical correlation function to be calculated
(ex. S+, Sz , S−, c†, c,), where ω is the real frequency and
η is a positive constant (giving broadening of the peaks).
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A(k, ω) and S(k, ω) at Zero Temperature

0 1 2 3 4 5 6
−2

0

2

4

qx

E
n
er
g
y

0.0

1.0

2.0

3.0

0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

qx

E
n
er
gy

0.0

0.5

1.0

1.5

2.0

A(qx , qy = 0, ω) (left) and S(qx , qy = 0, ω) (right) for a 64× 2 extended Hubbard ladder with
tx = −0.42, ty = −0.34, U = 3.72, Voffsite = 0.615387651996596, and 4 + 4 holes.
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Correction Vector DMRG

We calculate G(z) using G(ω) = − 1
π 〈ψ0|B̂|x(ω, η)〉,

where the correction-vector is defined by

|x(ω, η)〉 = 1

ω + iη + E0 − Ĥ
|A〉, where |A〉 ≡ Â|ψ0〉.

Assuming |x(ω, η)〉 is known, how to compute G(ω) with DMRG?
Answer: Use multi-target approach. At each step of the DMRG
algorithm, target the ground state of the system |ψ0〉, the vector
|A〉 and the |x(ω, η)〉 in the reduced density matrix, for each
frequency value ω and broadening η.

Version 1.0 G. Alvarez
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Correction Vector DMRG

How do we compute the correction-vector? Most used method
is Conjugate Gradient. Kühner and White, 1999 But we use the
Krylov-space method proposed by us Nocera and Alvarez, 2016a.
The correction-vector |x(ω, η)〉 is calculated directly as

|x(ω, η)〉 = V †S†
1

E0 + ω − D + iη
SV |A〉,

where D is the diagonal form of the Hamiltonian operator Ĥ,
we assume Ĥ|A〉 ' V †TV |A〉 = V †S†DSV |A〉, V is the matrix
of the Lanczos vectors spanning the Krylov space, and T is the
representation of the Hamiltonian in tridiagonal form.

Version 1.0 G. Alvarez
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Tridiagonal Decomposition of H

T

V † H

H is not in RAM

V

TV

big

big

small

sm
al
l

bi
g

H = V †TV , where V are the Lanczos
vectors, with small = hundreds, and
big = millions.

exp(αH)→ V †exp(αT )V

only for α� 1→ needs evolution
exp(αH) · · · exp(αH) = exp(nαH)

1

ω + iη + H
→ V † 1

ω + iη + T
V

(correction vector does not need evo-
lution)
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Evolving in DMRG
sweep the lattice

phys-
ical
time
t

in-
verse
temp.
β

Cheby-
shev
order
n

Krylov (needs tridiag., slow)

Chebyshev (fast)
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Evolving or Not. Tridiagonalizing or Not

Method Tridiagonalize Evolves in Scales Trivially

Correction Vector Yes No Yes3

Krylov Evolution Yes t or β No
Chebyshev Evolution No n No

3One frequency ω per node.
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Dynamics at Finite Temperature

Definition. The finite temperature correlation between
observables B and C, with at least one of them bosonic, at
time t ∈ R and inverse temperature β ≥ 0 is defined as

I(β, t) ≡ Tr(e−βHe−iHtBeiHtC)/Z . (8)

Definition. The Liouvillian or Liouville operator
L : H⊗H → H⊗H associated with the Hamiltonian Ĥ is
L ≡ Ĥ ⊗ 1− 1⊗ Ĥ.
Proposition Tiegel et al., 2014, Dalton, 1982, Barnett and Dalton, 1987,

Takahashi and Umezawa, 1975

I(β, ω) = 〈ψ(β)|[B ⊗ 1]
1

ω + iη + L − E0
[C ⊗ 1]|ψ(β)〉/Z (9)
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Dynamics at Finite Temperature in Three Steps

Step 1 (Fast): Find the ground state |ψ(∞)〉C of Entangler
Hamiltonian. This is the infinite temperature state of the
composite physical and ancilla Hamiltonian.

Step 2 (Slow and Serial): Reach finite temperatures β > 0 by
time evolving with Ĥ = Ĥph. ⊗ 1an. acting on physical Hilbert
space only: |ψ(T )〉 = e−βH/2|ψ(∞)〉.

Step 3 (Fast): Do a correction vector given by

|cv(ω, η)〉 = 1

ω + iη + L − E0
[C ⊗ 1]|ψ(β)〉 (10)
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DMRG Highlights of FY2018

paper81 is a computational and experimental study of tele-
phone compounds, where we simulated the S(k, ω) of doped
and undoped ladders with the DMRG, and compared with
experimental results by Alan Tennant. Use of GPUS achieved
over approximately 30%. Runs and restart done by Wael E.
This work exemplifies a collaboration between ORNL SNS
and ORNL HPC.

dmrgppPluginSc is the GPU support for DMRG++, done by
Ed D’Azevedo in collaboration with Wael E.. More details in
their talk. Crucial work to support GPUs!
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DMRG Highlights of FY2019

paper84 Targeting Multiple States in the DMRG with The
Singular Value Decomposition (by Ed, Wael, Nirav Patel and I)
described how to use the SVD when multitargeting, which is
nowhere to be found in the literature. But paper was rejected.

Krylov-time evolution has been implemented in DMRG++, for
real and imaginary time, as well as for RIXS (Steve J.).

Chebyshev expansion has been implemented in DMRG++ by
Alberto N.. This method is fast but needs careful consideration
of the spectrum bounds, due to the Cheybshev functions
having support in [−1, 1], making the method somewhat
brittle, and dependent on model and observable.

Version 1.0 G. Alvarez
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Highlights for the Next Two Years

GPU work moves beyond MAGMA library… Difficult area and
we need to write guidelines for GPU use.

DMRG++ becomes capable of obtaining real frequency
observables at finite temperature. Already coded, but needs
testing.

Honeycomb lattice study of dynamical observables becomes
possible, enabling simulation of Kitaev-like models;
collaboration with Satoshi O. and Pontus L.

Diagonalization “impurity” solvers based on DMRG help
Quantum Monte Carlo in the simulation of topological
materials; collaboration with Thomas M.

Version 1.0 G. Alvarez
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Obstacles and Workarounds

Obstacle: NVIDIA is BAD for free and open source work.

…Torvalds laid into Nvidia, calling it ‘the single
worst company’ the Linux developer
community has ever dealt with, …4

Workaround: AMD GPUs have free and open source drivers
and should offer a much better option than NVIDIA.

Obstacle: GPUs (regardless of vendor) aren’t general purpose
computers; its use is more limited than that of CPUs.
Workaround: None. We need GPU programming guidelines

4
[ “Linus Torvalds Gives Nvidia the Finger. Literally” https://www.wired.com/2012/06/torvalds-nvidia-linux/ ]
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Computer Programming

Obstacle: Computer programming is not often taken seriously:
people want to get things done quickly. But as corners are cut,
“technical debt” accumulates and quality suffers.

Workaround: “Traditional programmers” should be hired to
improve quality, and achieve better results long term.
Collaboration with Jay Billings.

Workaround: Tooling: GDB, valgrind, git. Also need CI and
CD, including in-house tools.

DMRG++ and related software is at https://github.com/g1257/ and at
https://code.ornl.gov/gonzalo_3

Version 1.0 G. Alvarez
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Summary as of October 14, 2019

1 Summit has been less helpful that we thought.5

2 Traditional Programmers might be helpful.
3 We’ll do real ω at finite T , which is a DMRG frontier.

D

Please download this talk

https://g1257.github.io/talks/

DMRG++ and related software is at https://github.com/g1257/ and
at https://code.ornl.gov/gonzalo_3

5For example, we failed to reach ground state for 12× 12.
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Credits

Thanks to the Scientific Discovery through Advanced Computing
(SciDAC) program funded by U. S. Department of Energy, Office of

Science, Advanced Scientific Computing Research and Basic
Energy Sciences, Division of Materials Sciences and Engineering.

Produced with LATEX and the Beamer package
with a custom theme.

Tikz was used for some figures.
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