Computing Correlated Electrons: Roadmap and Roadblocks

Gonzalo Alvarez

Center for Nanophase Materials Sciences and
Computer Science \& Mathematics Division
Oak Ridge National Laboratory

Computing Correlated Electrons: Roadmap and Roadblocks

(1) The RoadBlocks: Motivation, Problems and Solutions

Computing Correlated Electrons: Roadmap and Roadblocks

(1) The RoadBlocks: Motivation, Problems and Solutions
(2) The Roadmap: Time, Temperature, and Dynamics

Computing Correlated Electrons: Roadmap and Roadblocks

(9) The RoadBlocks: Motivation, Problems and Solutions
(2) The Roadmap: Time, Temperature, and Dynamics
(3) The Road Ahead: Computation and Our Strategic Vision

Experiment and Theory

$S(k, \omega) \quad A(k, \omega) \quad N(r, \omega) \quad$ Magnetization \quad SC Gaps

Theory

Experiment and Theory

$S(k, \omega) \quad A(k, \omega) \quad N(r, \omega) \quad$ Magnetization \quad SC Gaps

Theory

Experiment and Theory

$S(k, \omega) \quad A(k, \omega) \quad N(r, \omega) \quad$ Magnetization \quad SC Gaps

Theory

Experiment and Theory

$S(k, \omega) \quad A(k, \omega) \quad N(r, \omega) \quad$ Magnetization \quad SC Gaps

Theory

Experiment and Theory

$S(k, \omega) \quad A(k, \omega) \quad N(r, \omega) \quad$ Magnetization \quad SC Gaps

Theory

Atoms and Electrons

Electrons in Matter are often easy to study....

Atoms and Electrons

Electrons in Matter are often easy to study....
But not always.

Atoms and Electrons

Electrons in Matter are often easy to study....
But not always.
Some materials are difficult to study

Atoms and Electrons

Electrons in Matter are often easy to study... .
But not always.
Some materials are difficult to study
For example,

- superconductors
- magnetic materials,
- quantum dots
- nanostructures with transition metal oxides.

They are also technologically useful.

How do electron correlations cause functionality?

How do electron correlations cause functionality?

Answer: By having different phases, usually close in energy.

How do electron correlations cause functionality?

Answer: By having different phases, usually close in energy.

These phases present one order that can be easily (energetically speaking) turned into another.*

* See Ragotto, 2005.

What causes the energetically-close phases?

What causes the energetically-close phases?

Answer: The competition between spin and orbital degrees of freedom.

What causes the energetically-close phases?

Answer: The competition between spin and orbital degrees of freedom.

This competition originates in the strong correlation between electrons.

What causes the energetically-close phases?

Answer: The competition between spin and orbital degrees of freedom.

This competition originates in the strong correlation between electrons.

complicated phases

Strongly correlated materials			
			complex methods
:---			
to explain			

What causes the energetically-close phases?

Answer: The competition between spin and orbital degrees of freedom.

This competition originates in the strong correlation between electrons.

complicated phases

Strongly
correlated
materials

complex methods to explain

Why are these materials costly to study?

Why are these materials costly to study?

Answer: Because the "standard one-electron model" of metals breaks down.

Why are these materials costly to study?

Answer: Because the "standard one-electron model" of metals breaks down.

Therefore, an accurate approach to study strongly correlated materials is needed.

Why are these materials costly to study?

Answer: Because the "standard one-electron model" of metals breaks down.

Therefore, an accurate approach to study strongly correlated materials is needed.

And accurate approaches are costly.

The Exponential Problem in Second Quantization

$$
\left.H=\sum_{i, j}\langle i| \hat{K}|j\rangle c_{i}^{\dagger} c_{j}+\sum_{i, j, k, l}\langle i j| \hat{H}_{e-e}|k|\right\rangle c_{i}^{\dagger} c_{j}^{\dagger} c_{k} c_{l}
$$

The Exponential Problem in Second Quantization

$$
\left.H=\sum_{i, j}\langle i| \hat{K}|j\rangle c_{i}^{\dagger} c_{j}+\sum_{i, j, k, l}\langle i j| \hat{H}_{e-e}|k|\right\rangle c_{i}^{\dagger} c_{j}^{\dagger} c_{k} c_{l}
$$

Example: 6 sites, 2 electrons leads to $C_{2}^{6}=15$ states

The Exponential Problem in Second Quantization

$$
\left.H=\sum_{i, j}\langle i| \hat{K}|j\rangle c_{i}^{\dagger} c_{j}+\sum_{i, j, k, l}\langle i j| \hat{H}_{e-e}|k|\right\rangle c_{i}^{\dagger} c_{j}^{\dagger} c_{k} c_{l}
$$

Example: 6 sites, 2 electrons leads to $C_{2}^{6}=15$ states

For large N we have Stirling's approximation

$$
N!\rightarrow \sqrt{2 \pi N}\left(\frac{N}{e}\right)^{N}
$$

What does exponential really mean?

What does exponential really mean?

- Assume N_{f} "flavors" or orbitals (including spin), N sites

What does exponential really mean?

- Assume N_{f} "flavors" or orbitals (including spin), N sites
- Assume no symmetries (won't change the argument much)

What does exponential really mean?

- Assume N_{f} "flavors" or orbitals (including spin), N sites
- Assume no symmetries (won't change the argument much)
- Then complexity is $2^{N \times N_{f}}$.

What does exponential really mean?

- Assume N_{f} "flavors" or orbitals (including spin), N sites
- Assume no symmetries (won't change the argument much)
- Then complexity is $2^{N \times N_{f}}$.
- Assume a more or less realistic problem: $N_{f}=10, N=10$

What does exponential really mean?

- Assume N_{f} "flavors" or orbitals (including spin), N sites
- Assume no symmetries (won't change the argument much)
- Then complexity is $2^{N \times N_{f}}$.
- Assume a more or less realistic problem: $N_{f}=10, N=10$
- Exact diagonalization would take $\approx 10^{6}$ billion years to complete

What does exponential really mean?

- Assume N_{f} "flavors" or orbitals (including spin), N sites
- Assume no symmetries (won't change the argument much)
- Then complexity is $2^{N \times N_{f}}$.
- Assume a more or less realistic problem: $N_{f}=10, N=10$
- Exact diagonalization would take $\approx 10^{6}$ billion years to complete
- Problem not even in NP...

Hamiltonian Complexity: Not even in NP!

- NP problems are problems where a solution can be verified in polynomial time.

Hamiltonian Complexity: Not even in NP!

- NP problems are problems where a solution can be verified in polynomial time.
- Given \vec{v} one cannot verify in polynomial time if it's an eigenvector of H.... Because H has rank exponential in the number of sites.

Hamiltonian Complexity: Not even in NP!

- NP problems are problems where a solution can be verified in polynomial time.
- Given \vec{v} one cannot verify in polynomial time if it's an eigenvector of H.... Because H has rank exponential in the number of sites.
- The Hamiltonian problem is in class Quantum Merlin Arthur*

*See Rehuch et al., 2008 Schuch and Verstraete, 2009
Cubitt and Montanaro, 2013 Osborne, 2013
Liu et al., 2007 Aharonov and Naveh, 2002

Renormalization Group

Renormalization Group

Renormalization Group

up + down

Renormalization Group

1 block

Renormalization Group

1 block

Renormalization Group

1 block

Density Matrix Renormalization Group

- For 1D systems exponential problem can be avoided.

Density Matrix Renormalization Group

- For 1D systems exponential problem can be avoided.
- Algorithm: "Density Matrix Renormalization Group"
-White, 1992, White, 1993

Density Matrix Renormalization Group

- For 1D systems exponential problem can be avoided.
- Algorithm: "Density Matrix Renormalization Group"
©White, 1992, White, 1993

system

environment

Density Matrix Renormalization Group

- For 1D systems exponential problem can be avoided.
- Algorithm: "Density Matrix Renormalization Group"
©White, 1992, White, 1993

system

environment

Density Matrix Renormalization Group

- For 1D systems exponential problem can be avoided.
- Algorithm: "Density Matrix Renormalization Group"
©White, 1992, White, 1993

system

environment

Density Matrix Renormalization Group

- For 1D systems exponential problem can be avoided.
- Algorithm: "Density Matrix Renormalization Group"
©White, 1992, White, 1993

system

environment

Density Matrix Renormalization Group

- For 1D systems exponential problem can be avoided.
- Algorithm: "Density Matrix Renormalization Group"
©White, 1992, White, 1993

> system environment

Density Matrix Renormalization Group

- For 1D systems exponential problem can be avoided.
- Algorithm: "Density Matrix Renormalization Group"

BWhite, 1992, White, 1993

system
environment

- Discard (an exponential number of) states. Keep m states in Hibert space at all times.

Density Matrix Renormalization Group

- For 1D systems exponential problem can be avoided.
- Algorithm: "Density Matrix Renormalization Group"
©White, 1992, White, 1993

system
environment
- Discard (an exponential number of) states. Keep m states in Hibert space at all times.
- Controlled error, exponentially decaying with m for most 1D systems.

Why does the DMRG work...

 ...when it does, and doesn't when it doesn't?

Why does the DMRG work...

...when it does, and doesn't when it doesn't?

How much entanglement between A and B ?

Why does the DMRG work...

...when it does, and doesn't when it doesn't?

How much entanglement between A and B ?
A : Roughly equal to the area between A and B.

Why does the DMRG work...

...when it does, and doesn't when it doesn't?

How much entanglement between A and B ?
A : Roughly equal to the area between A and B.
1D: Entropy $\rightarrow S \approx 1 \rightarrow$ complexity $=\exp ^{S}=$ const.

Why does the DMRG work...

 ...when it does, and doesn't when it doesn't?

How much entanglement between A and B ?
A : Roughly equal to the area between A and B.
1D: Entropy $\rightarrow S \approx 1 \rightarrow$ complexity $=\exp ^{S}=$ const.
2D: Entropy $\rightarrow S \approx L_{y} \rightarrow$ complexity $=\exp ^{L_{y}}=$ exponential

Why does the DMRG work...

 ...when it does, and doesn't when it doesn't?

How much entanglement between A and B ?
A : Roughly equal to the area between A and B.
1D: Entropy $\rightarrow S \approx 1 \rightarrow$ complexity $=\exp ^{S}=$ const.
2D: Entropy $\rightarrow S \approx L_{y} \rightarrow$ complexity $=\exp ^{L_{y}}=$ exponential

You : Hey! You're handwaving!
Me : OK, OK, see: Eisert et al., 2010

Applications of the DMRG

- Spin systems quantum Heisenberg model
- Fermionic systems Hubbard, t-J models
- Quantum chemistry,

White and Martin, 1999

- Polymers

Repetit and Pastor, 1997

Only Two Methods: DMRG and QMC

Method must become exact systematically

Only Two Methods: DMRG and QMC

Method must become exact systematically

Item	DMRG	QMC
Complexity	Pol. in 1D, Exp. in 2D	Pol., Exp. if SP*
Real time and freq.	Yes	No
Finite temperature	Possible	Yes
Active Research	Yes	Yes

*SP stands for Sign Problem

(1) The RoadBlocks: Motivation, Problems and Solutions
(2) The Roadmap: Time, Temperature, and Dynamics
(3) The Road Ahead: Computation and Our Strategic Vision

Roadmap: Time, Temperature, and Dynamics

- Time
- Temperature
- Dynamics

Time Evolution: Mott Insulators for Solar Cells

Time Evolution: Mott Insulators for Solar Cells

Time propagation of an electronic excitation

$$
\begin{array}{cc}
& \text { left lead } \\
\tau<0 & \text { MI }
\end{array} \text { right lead } .
$$

Time Evolution: Mott Insulators for Solar Cells

Time propagation of an electronic excitation

$$
\left.\begin{array}{ccc}
& \text { left lead } & \text { MI } \\
\tau<0 & \text { right lead } \\
\tau=0 & \cdots 000 \bigcirc(1)(1)(1)(1) \\
\tau=00000
\end{array}\right]
$$

Time Evolution: Mott Insulators for Solar Cells

Time propagation of an electronic excitation

$$
\begin{aligned}
& \text { left lead } \mathrm{Ml} \text { right lead } \\
& \tau<0 \cdots \circ 000 \text { (1) (1) (1) (1) OOOO ... } \\
& \tau=0 \cdots \circ 000(1)(1) \\
& \tau>0 \cdots \circ 000 \uparrow \text { (1) (11) } 1 \text { ○000 } \cdot \cdots
\end{aligned}
$$

Time Evolution: Mott Insulators for Solar Cells

Time propagation of an electronic excitation

$$
\begin{aligned}
& \text { left lead } \mathrm{Ml} \text { right lead }
\end{aligned}
$$

$$
\begin{aligned}
& \tau=0 \cdots \circ 000(1)(1) \\
& \tau>0 \cdots 0000 \text { (1) (1) (1) } 0000 \cdots \\
& \cdots .0000 \text { (1) (1) (1) } 000 \cdots
\end{aligned}
$$

Time Evolution: Mott Insulators for Solar Cells

Time propagation of an electronic excitation

$$
\begin{aligned}
& \text { left lead } \mathrm{Ml} \text { right lead } \\
& \tau<0 \cdots \circ 000 \text { (1) (1) (1) (1) OOOO ... } \\
& \tau=0 \cdots 0000(1)(1)(1)(1) 0000 \cdots \\
& \tau>0 \cdots 0000 \text { (1) (11) (D)0000 ... } \\
& \cdots \circ 000 \bigcirc(1)(1) \text { (1D) } 000 \cdots
\end{aligned}
$$

Adapted from ida Silva et al., 2010

Time Evolution: Mott Insulators for Solar Cells

Time propagation of an electronic excitation

$$
\begin{aligned}
& \text { left lead } \mathrm{Ml} \text { right lead } \\
& \tau<0 \cdots \circ 00 \circ \text { (1) (1) (1) (1) ○○○○••• } \\
& \tau=0 \cdots \circ 000(1)(1)(1) \circ 000 \cdots \\
& \tau>0 \cdots 0000 \text { (1) (1) (11) (1)OOOO... } \\
& \cdots \cdot 000 \bigcirc(1)(1)(1) \cdot 00 \cdots
\end{aligned}
$$

Adapted from da Silva et al., 2010

For a review see Ranousakis, 2010 and references therein

We use Krylov-space Time Evolution

Tridiagonalize $H=V^{\dagger} T V$ starting Lanczos with $|\phi\rangle$. V is the matrix of Lanczos vectors and T is tridiagonal.

We use Krylov-space Time Evolution

Tridiagonalize $H=V^{\dagger} T V$ starting Lanczos with $|\phi\rangle$. V is the matrix of Lanczos vectors and T is tridiagonal.

$$
\exp (\alpha H)|\phi\rangle=\exp \left(\alpha V^{\dagger} T V\right)|\phi\rangle=V^{\dagger} \exp (-i T t) V|\phi\rangle
$$

We use Krylov-space Time Evolution

Tridiagonalize $H=V^{\dagger} T V$ starting Lanczos with $|\phi\rangle$.
V is the matrix of Lanczos vectors and T is tridiagonal.

$$
\exp (\alpha H)|\phi\rangle=\exp \left(\alpha V^{\dagger} T V\right)|\phi\rangle=V^{\dagger} \exp (-i T t) V|\phi\rangle
$$

Diagonalize $T=S^{\dagger} D S$, where D diagonal.

We use Krylov-space Time Evolution

Tridiagonalize $H=V^{\dagger} T V$ starting Lanczos with $|\phi\rangle$.
V is the matrix of Lanczos vectors and T is tridiagonal.

$$
\exp (\alpha H)|\phi\rangle=\exp \left(\alpha V^{\dagger} T V\right)|\phi\rangle=V^{\dagger} \exp (-i T t) V|\phi\rangle
$$

Diagonalize $T=S^{\dagger} D S$, where D diagonal.
Finally,* compute the evolution with

$$
\exp (\alpha H)|\phi\rangle_{i}=\sum_{k, k^{\prime}, k^{\prime \prime}, j} V_{i, k}^{*} S_{k, k^{\prime}}^{\dagger} \exp \left(\alpha d_{k^{\prime}}\right) S_{k^{\prime}, k^{\prime \prime}} V_{j, k^{\prime \prime}}|\phi\rangle_{j}
$$

We use Krylov-space Time Evolution

Tridiagonalize $H=V^{\dagger} T V$ starting Lanczos with $|\phi\rangle$.
V is the matrix of Lanczos vectors and T is tridiagonal.

$$
\exp (\alpha H)|\phi\rangle=\exp \left(\alpha V^{\dagger} T V\right)|\phi\rangle=V^{\dagger} \exp (-i T t) V|\phi\rangle
$$

Diagonalize $T=S^{\dagger} D S$, where D diagonal.
Finally,* compute the evolution with

$$
\exp (\alpha H)|\phi\rangle_{i}=\sum_{k, k^{\prime}, k^{\prime \prime}, j} V_{i, k}^{*} S_{k, k^{\prime}}^{\dagger} \exp \left(\alpha d_{k^{\prime}}\right) S_{k^{\prime}, k^{\prime \prime}} V_{j, k^{\prime \prime}}|\phi\rangle_{j}
$$

* This is within a DMRG method, so don't forget to target the appropriate states. For an implementation, see Alvarez et al., 2011.

Time Evolution: Our Theory Work

Accuracy of tDMRG

Alvarez et al., 2011

Time Evolution: Our Theory Work

Propagation of a holon-doublon

Accuracy of tDMRG

Alvarez et al., 2011

©da Silva et al., 2010

Time Evolution: Our Theory Work

Propagation of a holon-doublon

Accuracy of tDMRG

Alvarez et al., 2011

Rda Silva et al., 2010

For our theory work on time evolution, see also
Rda Silva et al., 2012, da Silva et al., 2013, Al-Hassanieh et al., 2013.

Time, Temperature, and Dynamics

- Time
- Temperature
- Dynamics

Minimally entangled typical thermal states

- Problem: At $T>0$ mixing of states leads to entanglement.

$$
|\psi\rangle=\sum_{E} \exp (-\beta E)|E\rangle
$$

Minimally entangled typical thermal states

- Problem: At $T>0$ mixing of states leads to entanglement.

$$
|\psi\rangle=\sum_{E} \exp (-\beta E)|E\rangle
$$

- Previous work on DMRG at
$T>0$: Rerstraete et al., 2004,
Zwolak and Vidal, 2004,
Feiguin and White, 2005

Minimally entangled typical thermal states

- Problem: At $T>0$ mixing of states leads to entanglement.

$$
|\psi\rangle=\sum_{E} \exp (-\beta E)|E\rangle
$$

- Previous work on DMRG at
$T>0$: Verstraete et al., 2004,
Zwolak and Vidal, 2004,
Feiguin and White, 2005
- New Solution: Minimally entangled typical thermal states (METTS) White, 2009
R Stoudenmire and White, 2010

Minimally entangled typical thermal states

- Problem: At $T>0$ mixing of states leads to entanglement.
$|\psi\rangle=\sum_{E} \exp (-\beta E)|E\rangle$
- Previous work on DMRG at $T>0$: © Verstraete et al., 2004, Zwolak and Vidal, 2004, Feiguin and White, 2005
- New Solution: Minimally entangled typical thermal states (METTS) White, 2009 R Stoudenmire and White, 2010

Minimally entangled typical thermal state

Adapted from Schollwöck, 2009

Temperature Dependence: Our Work

$$
H=\sum_{i, j, \sigma} t_{i j} c_{i \sigma}^{\dagger} c_{j \sigma}+\sum_{i, \sigma} V_{i} n_{i, \sigma}
$$

Temperature Dependence: Our Work

$$
H=\sum_{i, j, \sigma} t_{i j} c_{i \sigma}^{\dagger} c_{j \sigma}+\sum_{i, \sigma} V_{i} n_{i, \sigma}
$$

Temperature Dependence: Our Work

$$
H=\sum_{i, j, \sigma} t_{i j} c_{i \sigma}^{\dagger} c_{j \sigma}+\sum_{i, \sigma} V_{i} n_{i, \sigma}
$$

Both figures are from Ralvarez, 2013. Talk Tomorrow Afternoon. Q46.6

Temperature Dependence: Our Work

$$
H=\sum_{i, j, \sigma} t_{i j} c_{i \sigma}^{\dagger} c_{j \sigma}+U \sum_{i} n_{i \uparrow} n_{i \downarrow}+\mu \hat{N}
$$

Hubbard chain with length L (as indicated) for $T=0$.

Temperature Dependence: Our Work

$$
H=\sum_{i, j, \sigma} t_{i j} c_{i \sigma}^{\dagger} c_{j \sigma}+U \sum_{i} n_{i \uparrow} n_{i \downarrow}+\mu \hat{N}
$$

Hubbard chain with length L (as indicated) for $T=0$.

Hubbard chain with length L (as indicated) for $T>0$.

Temperature Dependence: Our Work

$$
H=\sum_{i, j, \sigma} t_{i j} c_{i \sigma}^{\dagger} c_{j \sigma}+U \sum_{i} n_{i \uparrow} n_{i \downarrow}+\mu \hat{N}
$$

Hubbard chain with length L (as indicated) for $T=0$.

Hubbard chain with length L (as indicated) for $T>0$.

Both figures are from Alvarez, 2013. Talk Tomorrow Afternoon. Q46.6

Time, Temperature, and Dynamics

- Time
- Temperature
- Dynamics Real Frequency Properties

Compute $S(k, \omega), N(\vec{r}, \omega), \sigma(\omega)$ with DMRG

Compute $S(k, \omega), N(\vec{r}, \omega), \sigma(\omega)$ with DMRG

Methods

- Evolve in time, then Fourier transform into ω White and Affleck, 2008

Compute $S(k, \omega), N(\vec{r}, \omega), \sigma(\omega)$ with DMRG

Methods

- Evolve in time, then Fourier transform into ω Bhite and Affleck, 2008
- Continued fraction approach ie Hallberg, 1995

$$
\rho(\omega)=\langle g s| S_{q}^{-} \frac{1}{\omega+i \delta-\left(H-E_{0}\right)} S_{q}^{+}|g s\rangle
$$

Compute $S(k, \omega), N(\vec{r}, \omega), \sigma(\omega)$ with DMRG

Methods

- Evolve in time, then Fourier transform into ω ©White and Affleck, 2008
- Continued fraction approach ie Hallberg, 1995

$$
\rho(\omega)=\langle g s| S_{q}^{-} \frac{1}{\omega+i \delta-\left(H-E_{0}\right)} S_{q}^{+}|g s\rangle
$$

- Correction vectors - Kühner and White, 1999, Pati et al., 1999, Küner et al., 2000.

Compute $S(k, \omega), N(\vec{r}, \omega), \sigma(\omega)$ with DMRG

Methods

- Evolve in time, then Fourier transform into ω Bhite and Affleck, 2008
- Continued fraction approach 目Hallberg, 1995

$$
\rho(\omega)=\langle g s| S_{q}^{-} \frac{1}{\omega+i \delta-\left(H-E_{0}\right)} S_{q}^{+}|g s\rangle
$$

- Correction vectors Pati et al., 1999, Küner et al., 2000.
- Other methods. Active area of research Reckelmann, 2002, Dargel et al., 2011, Dargel et al., 2012.

Nanoscale Emergent Electronic Patterns in Cuprates

Spin and charge stripes
R Tranquada et al., 1995, Mook et al., 2002

Checkerboard
charge modulations
Banaguri et al., 2004

(1) The RoadBlocks: Motivation, Problems and Solutions

(2) The Roadmap: Time, Temperature, and
Dynamics
(3) The Road Ahead: Computation and Our Strategic Vision

Our Computational Work

- User Program at CNMS benefits from our effort to develop codes for correlated electrons Alvarez, 2009, Alvarez, 2012

Our Computational Work

- User Program at CNMS benefits from our effort to develop codes for correlated electrons Alvarez, 2009, Alvarez, 2012
- DMRG++ and similar codes are free and open source software

Our Computational Work

- User Program at CNMS benefits from our effort to develop codes for correlated electrons Alvarez, 2009, Alvarez, 2012
- DMRG++ and similar codes are free and open source software
- Publishing computer code is now recommended by most funding agencies

Our Computational Work

- User Program at CNMS benefits from our effort to develop codes for correlated electrons Alvarez, 2009, Alvarez, 2012
- DMRG++ and similar codes are free and open source software
- Publishing computer code is now recommended by most funding agencies
- Let us not throw it over the wall:
- Software available at github. com
- Same code I use
- Updates don't break what works

High Performance Computing

- Is Moore's law over? : i Sutter, 2005

High Performance Computing

- Is Moore's law over? - Sutter, 2005
- Then we sure must use concurrency, right?

High Performance Computing

- Is Moore's law over? Rutter, 2005
- Then we sure must use concurrency, right?
- But only some problems are parallel; see Parallel DMRG Stoudenmire and White, 2013

High Performance Computing

- Is Moore's law over? R ${ }^{-1}$ Sutter, 2005
- Then we sure must use concurrency, right?
- But only some problems are parallel; see Parallel DMRG Stoudenmire and White, 2013
- Maybe we should use hybrid hardware with better memory bandwidth?

High Performance Computing

- Is Moore's law over? Rutter, 2005
- Then we sure must use concurrency, right?
- But only some problems are parallel; see Parallel DMRG Roudenmire and White, 2013
- Maybe we should use hybrid hardware with better memory bandwidth?
- But hardware landscape (GP-GPUs) is challenging given our aims

Our Computational Work: Our Aims

Our Computational Work: Our Aims

- We develop only free and open source software

Our Computational Work: Our Aims

- We develop only free and open source software
- We want the same code working across architectures

Our Computational Work: Our Aims

- We develop only free and open source software
- We want the same code working across architectures
- We use C++, pthreads, and MPI

Our Computational Work: Our Aims

- We develop only free and open source software
- We want the same code working across architectures
- We use C++, pthreads, and MPI
- We are considering the D programming language Alexandrescu, 2010 dlang. org

The Road Ahead: Our Strategic Vision

The Road Ahead: Our Strategic Vision

- Implement parallel DMRG ${ }^{1}$

1 Stoudenmire and White, 2013

The Road Ahead: Our Strategic Vision

- Implement parallel DMRG ${ }^{1}$
- Work towards 2D DMRG

1 Stoudenmire and White, 2013

The Road Ahead: Our Strategic Vision

- Implement parallel DMRG ${ }^{1}$
- Work towards 2D DMRG
- Develop a matrix product states code

1 Stoudenmire and White, 2013

The Road Ahead: Our Strategic Vision

- Implement parallel DMRG ${ }^{1}$
- Work towards 2D DMRG
- Develop a matrix product states code
- Stay at the vanguard of renormalization methods ${ }^{2}$

[^0]
Opportunities at ORNL

- Diversity in Recruiting Efforts at ORNL
- RAMS (Research Alliance in Mathematics and Science)
- GEM (Graduate Education for Minorities)

Summary: Our Aims

Summary: Our Aims

- Accuracy: Only use methods that can systematically be improved

Summary: Our Aims

- Accuracy: Only use methods that can systematically be improved
- Breadth: Simulate as many experiments as possible: time, temperature, dynamics, etc.

Summary: Our Aims

- Accuracy: Only use methods that can systematically be improved
- Breadth: Simulate as many experiments as possible: time, temperature, dynamics, etc.
- Detail: Provide technical and computational resources to the community

Summary: Our Aims

- Accuracy: Only use methods that can systematically be improved
- Breadth: Simulate as many experiments as possible: time, temperature, dynamics, etc.
- Detail: Provide technical and computational resources to the community

> DMRG++: https://web.ornl.gov/~gz1/dmrgPlusPlus/ Free and open source codes for DMRG, Lanczos, FreeFermions, and spin-phonon fermion models: https://web.ornl.gov/~gz1/ This talk is at https://web.ornl.gov/~gz1/talks/

Credit Line

Thanks to:
K. Al-Hassanieh, E. Dagotto, L. Dias da Silva, P. Kent, T. Maier, S. Manmana, E. Stoudenmire, J. Rincón, M. Summers, S. R. White.

Credit Line

This work was supported by the Center for Nanophase Materials Sciences, sponsored by the Scientific User Facilities Division, Basic Energy Sciences, U.S. Department of Energy, under contract with UT-Battelle. This research used resources of the National Center for Computational Sciences, as well as the OIC at Oak Ridge National Laboratory. G.A. acknowledges support from the DOE Early Career Research Program. Thanks to Oeneray dine of

Media Credits

Description	Source	License
Aerial of the Spallation Neutron Source	ORNL Media	(C)Used with permission
General principle of ARPES with description	Wikimedia Commons	
Schematic diagram of a scanning tunneling microscope	Wikimedia Commons http://commons.wikimedia. org/wiki/File:ScanningTunnelingMicroscope_ schematic.png	Creative Commons Attribution-Share Alike 2.0 Austria
Sensing element of the SQUID	Wikimedia Commons http://commons.wikimedia.org/ wiki/File:SQUID_by_Zureks.jpg	Creative Commons Attribution-Share Alike 3.0 Unported
Closeup of scanning tunneling microscope sample	Wikimedia Commons http://commons.wikimedia.org/ wiki/File:Stmsample.jpg	Creative Commons Attribution-Share Alike 2.5 Generic
King Arthur Asks Counsel of Merlin	King Arthur and the Knights of the Round Table (P. 21) - 1921 The Camelot Project http://d.lib.rochester.edu/camelot/ image/dixon-king-arthur-asks-counsel-of-merlin	

Continued on next page...

Media Credits (continued)

Description	Source	License
Structure of the water molecule	Wikimedia Commons http://commons.wikimedia.org/ wiki/File:Water_molecule.svg	
Cristallographic structure of a pnictide	Wikimedia Commons http://commons.wikimedia.org/ wiki/File:Pnictide_cristallographic_structure. jpg	Creative Commons Attribution-Share Alike 3.0 Unported
Red boxing glove	Pavel Sevela / Wikimedia Commons http://commons. wikimedia.org/wiki/File:Red_boxing_glove.jpg	Creative Commons Attribution-Share Alike 3.0 Unported
The face of a black windup alarm clock	Wikimedia Commons http://commons.wikimedia.org/ wiki/File:2010-07-20_Black_windup_alarm_clock_ face_SVG.svg	Creative Commons Attribution-Share Alike 3.0 Unported
Scenic - completed photovoltaic array, solar panel	ORNL Media	(C)Used with permission
A thermometer	Wikimedia Commons http://commons.wikimedia.org/ wiki/File:Pakkanen.jpg	
Climate control knobs	Wikimedia Commons http://commons.wikimedia.org/ wiki/File:Knobs-for-climate-control.jpg	

Continued on next page...

Media Credits (continued)

Description	Source	License
Rodovia Washington Luis	Wikimedia Commons http://commons.wikimedia.org/ wiki/File:Rodovia_Washington_Luis_1.jpg	Creative Commons Attribution-Share Alike 2.0 Generic
Traffic cone	Wikimedia Commons http://commons.wikimedia.org/ wiki/File:Pilone.svg	Creative Commons Attribution-Share Alike 3.0 Unported

References

：Aharonov，D．and Naveh，T．（2002）． arXiv：quant－ph／0210077，Quantum NP－A Survey．
囯 Al－Hassanieh，K．A．，Rincon，J．，Dagotto，E．，and Alvarez，G． （2013）．
Phys．Rev．B，88：045107．
围 Alexandrescu，A．（2010）．
The D Programming Language．
Addison－Wesley，Boston．
围 Alvarez，G．（2009）．
The density matrix renormalization group for strongly correlated electron systems：A generic implementation．
Computer Physics Communications，180：1572．
嘈 Alvarez，G．（2012）．

Comp. Phys. Comm., 183:2226-2232.
圊 Alvarez, G. (2013).
Production of minimally entangled typical thermal states with the krylov-space approach.
Phys. Rev. B, 87:245130.
Alvarez, G., da Silva, L. G. G. V. D., Ponce, E., and Dagotto, E. (2011).

Time evolution with the dmrg algorithm: A generic implementation for strongly correlated electronic systems.
Phys. Rev. E, 84:056706.
击 Barthel, T., Pineda, C., and Eisert, J. (2009).
Phys. Rev. A, 80:042333.
(2009).

Phys. Rev. B, 80:165129.
Cubitt, T. and Montanaro, A. (2013).
arXiv：1311．3161，Complexity classification of local Hamiltonian problems．
（i．da Silva，L．G．G．V．D．，Al－Hassanieh，K．A．，Feiguin，A．E．， Reboredo，F．A．，and Dagotto，E．（2010）．
Phys．Rev．B，81：125113．
围 da Silva，L．G．G．V．D．，Alvarez，G．，and Dagotto，E．（2012）． Dynamics of doublon－holon pairs in hubbard two－leg ladders． Phys．Rev．B，86：195103．
目 da Silva，L．G．G．V．D．，Alvarez，G．，Summers，M．，and Dagotto，E． （2013）．
Charge excitations in two－leg ladders：A tdmrg approach． J Supercond Nov Magn，26：2193－2196．
國 Dagotto，E．（2005）．
Complexity in strongly correlated electronic systems．
Science，309：257．

围 Dargel，P．，Honecker，A．，Peters，R．，Noack，R．M．，and Pruschke， T．（2011）．
Adaptive lanczos－vector method for dynamic properties within the density－matrix renormalization group．
Phys．Rev．B，83：161104（R）．
Dargel，P．E．，Wöllert，A．，Honecker，A．，McCulloch，I．P．， Schollwöck，U．，and Pruschke，T．（2012）．
Lanczos algorithm with matrix product states for dynamical correlation functions．
Phys．Rev．B，85：205119．
图 Eisert，J．，Cramer，M．，and Plenio，M．B．（2010）． Rev．Mod．Phys．，82：277．
目 Evenbly，G．and Vidal，G．（2009）．
Phys．Rev．B，79：144108．
Reiguin，A．R．and White，S．R．（2005）．

Time－step targeting methods for real－time dynamics using the density matrix renormalization group．
Phys．Rev．B，72：020404．
围 Gomes，K．K．，Pasupathy，A．N．，Pushp，A．，Ono，S．，Ando，Y．，and Yazdani，A．（2007）．
Nature，447：569．
目 Hallberg，K．（1995）．
Density－matrix algorithm for the calculation of dynamical properties of low－dimensional systems．
Phys．Rev．B，52：9827．
围 Hanaguri，T．，Lupien，C．，Kohsaka，Y．，Lee，D．H．，Azuma，M．， Takano，M．，Takagi，H．，and Davis，J．C．（2004）．
Nature，430：1001．
固 Jeckelmann，E．（2002）．
Phys．Rev．B，66：045114．

囯 Koenig，R．，Reichardt，B．W．，and Vidal，G．（2009）． Phys．Rev．B，79：195123．

围 Kraus，C．V．，Schuch，N．，Verstraete，F．，and Cirac，J．I．（2010）． Phys．Rev．A，81：052338．
圄 Kühner，T．and White，S．（1999）． Phys．Rev．B，60：335．

國 Küner，T．，White，S．，and Monien，H．（2000）． Phys．Rev．B，61：12474．
Lang，K．，Madhavan，V．，Hoffman，J．E．，Hudson，E．W．，Eisaki，H．， Uchida，S．，and Davis，J．C．（2002）． Imaging the granular structure of high－Tc superconductivity in underdoped $\mathrm{Bi}_{2} \mathrm{Sr}_{2} \mathrm{CaCu}_{2} \mathrm{O}_{8+\delta}$ ．
Nature，415：412．
Repetit，M．－B．and Pastor，G．M．（1997）．
Phys．Rev．B，56：4447．

围 Liu，Y．－K．，Christandl，M．，and Verstraete，F．（2007）． Phys．Rev．Lett．，98：110503．

或 M．Aguado，G．V．（2008）．
Phys．Rev．Lett．，100：070404．
目 M．Rizzi，S．Montangero，G．V．（2008）．
Phys．Rev．A，77：052328．
固 Manousakis，E．（2010）． Phys．Rev．B，82：125109．

围 Mook，H．A．，Dai，P．，and Dogan，F．（2002）． Phys．Rev．Lett．，88：097004．
O Osborne，T．J．（2013）． arXiv：1106．5875，Hamiltonian complexity．
Rati，S．，Ramasesha，S．，Shuai，Z．，and Brédas，J．（1999）． Phys．Rev．B，59：14827．

囯 Pfeifer，R．N．C．，Evenbly，G．，and Vidal，G．（2009）． Physical Review A，79：040301（R）．
囯 Schollwöck，U．（2009）． Physics，2：39．
雷 Schuch，N．，Cirac，I．，and Verstraete，F．（2008）． Phys．Rev．Lett．，100：250501．
囦 Schuch，N．and Verstraete，F．（2009）． Nature Physics，5：732．

堛 Stoudenmire，E．and White，S．（2010）． New J．Phys．，12：055026．
围 Stoudenmire，E．M．and White，S．R．（2013）． Real－space parallel density matrix renormalization group． Phys．Rev．B，87：155137．

直 Sutter，H．（2005）．

The free lunch is over，a fundamental turn toward concurrency in software．

Dr．Dobb＇s Journal， 30.

睲 Tranquada，J．M．，Sternlieb，B．J．，Axe，J．D．，Nakamura，Y．，and Uchida，S．（1995）．
Evidence for stripe correlations of spins and holes in copper oxide superconductors．
Nature，375：561．
围 Verstraete，F．，Garcia－Ripoll，J．J．，and Cirac，J．I．（2004）． Phys．Rev．Lett．，93：207204．

國 Vidal，G．（2008）．
Phys．Rev．Lett．，101：110501．
目 White，S．（2009）．
Phys．Rev．Lett．，102：190601．
围 White，S．R．（1992）．

Phys．Rev．Lett．，69：2863．
囯 White，S．R．（1993）．
Phys．Rev．B，48：345．
R White，S．R．and Affleck，I．（2008）．
Spectral function for the $s=1$ heisenberg antiferromagetic chain． Phys．Rev．B，77：134437．

目 White，S．R．and Martin，R．L．（1999）．
J．Chem．Phys．，110：4127－4130．
䍰 Zwolak，M．and Vidal，G．（2004）．
Phys．Rev．Lett．，93：207205．

Colophon

Produced with $\operatorname{LT} T_{E X}$ and the Beamer package with a custom theme.

Tikz was used for some figures.

[^0]: 1 Stoudenmire and White, 2013
 2-incorboz and Vidal, 2009,
 Evenbly and Vidal, 2009,
 Koenig et al., 2009, M. Aguado, 2008
 RM. Rizzi, 2008, Pfeifer et al., 2009,
 Vidal, 2008, Barthel et al., 2009,
 Kraus et al., 2010

