
QuantumGEP: Gene Expression
Programming for Quantum Computing
Gonzalo Alvarez,
Ryan Bennink,
Stephan Irle,
Jacek Jakowski

March Meeting of the APS. March 21st, 2023

Credit: MIT

Motivation: FindQuantum Circuits

q Which quantum circuits do we want?
Those that when applied to an initial state yield
the ground state of a Hamiltonian

q Why? In order to use quantum computing in
Condensed Matter, Graph Theory, and Quantum
Chemistry

q QuantumGEP can produce thousands of cir-
cuits, with hundreds correct; it produces non-
parametric circuits

2

Credit: MIT

Motivation: FindQuantum Circuits

q Which quantum circuits do we want?
Those that when applied to an initial state yield
the ground state of a Hamiltonian

q Why? In order to use quantum computing in
Condensed Matter, Graph Theory, and Quantum
Chemistry

q QuantumGEP can produce thousands of cir-
cuits, with hundreds correct; it produces non-
parametric circuits

2

Credit: MIT

Motivation: FindQuantum Circuits

q Which quantum circuits do we want?
Those that when applied to an initial state yield
the ground state of a Hamiltonian

q Why? In order to use quantum computing in
Condensed Matter, Graph Theory, and Quantum
Chemistry

q QuantumGEP can produce thousands of cir-
cuits, with hundreds correct; it produces non-
parametric circuits

2

Gene Expression Programming Overview

Q

+

∗ −

a b c d

Abstract Syntax Tree (AST) for√
a ∗ b + (c − d), with string rep-

resentation Q+*-abcd, operator (or
primitives) in {Q,+,−, ∗}, and leaves
(shaded in the figure) in {a, b, c, d}.
Order is breadth first. No parenthesis!

+

b ∗

a −

a Q

a

Operators here as before, inputs a and b,
expression b+a(a−

√
a).The 20 charac-

ter AST string +b*a-aQababbabbbabab
has a coding region (the first 8) shown
pictorially as an AST.The last 12 are non
coding. [Ferreira, 2006]

3

Gene Expression Programming Overview

Q

+

∗ −

a b c d

Abstract Syntax Tree (AST) for√
a ∗ b + (c − d), with string rep-

resentation Q+*-abcd, operator (or
primitives) in {Q,+,−, ∗}, and leaves
(shaded in the figure) in {a, b, c, d}.
Order is breadth first. No parenthesis!

+

b ∗

a −

a Q

a

Operators here as before, inputs a and b,
expression b+a(a−

√
a).The 20 charac-

ter AST string +b*a-aQababbabbbabab
has a coding region (the first 8) shown
pictorially as an AST.The last 12 are non
coding. [Ferreira, 2006]

3

Quantum Circuits in GEP

Example of a 4-bit quantum circuit [Alvarez et al., 2023]

QC Pratictioner’s representation

x0

x1

x2

x3

D

B

C

A

Every gate takes one input and produces
one output
The final output is A0,2B1,2C2,3D0ψ0

ψ0

D0

C2,3

B1,2

A0,2

St
rin

g in
GEP

A
0

2
B

1
2

C
2

3
D

0
ψ

T
he

Q
ua

nt
um

G
EP

tr
ee

4

Quantum Circuits in GEP

Example of a 4-bit quantum circuit [Alvarez et al., 2023]

QC Pratictioner’s representation

x0

x1

x2

x3

D

B

C

A

Every gate takes one input and produces
one output
The final output is A0,2B1,2C2,3D0ψ0

ψ0

D0

C2,3

B1,2

A0,2

St
rin

g in
GEP

A
0

2
B

1
2

C
2

3
D

0
ψ

T
he

Q
ua

nt
um

G
EP

tr
ee

4

QuantumGEP: The Main Algorithm

1. Start with an original population of M circuits generated randomly

2. By gene expression programming mutate and combine the existing size M
population, to generate M′ = 2M new circuits {C(ϕ)}0≤j<M′1

3. For every circuit j, define the ϕ−dependent state |ψj(ϕ)〉 ≡ Cj(ϕ)|ψin〉.
4. For every circuit j, compute the pre-fitness function Pj(ϕ) = −〈ψj(ϕ)|H|ψj(ϕ)〉 and

find the ϕ where the maximum occurs; let’s call it ϕmax.

5. For every circuit j, calculate its fitness Fj ≡ Pj(ϕmax).

6. Eliminate the M circuits with least fitness and keep the remaing M for the next step.

7. Go to step 2.

1These circuits may depend on K continuous variables ϕ ≡ {ϕk}0≤k<K . For example, consider that the
rotation gate may depend on the angle of rotation, and, in general, gates may depend on arbitrary
parameters collectively called ϕ. [Alvarez et al., 2023]

5

QuantumGEP: The Main Algorithm

1. Start with an original population of M circuits generated randomly

2. By gene expression programming mutate and combine the existing size M
population, to generate M′ = 2M new circuits {C(ϕ)}0≤j<M′1

3. For every circuit j, define the ϕ−dependent state |ψj(ϕ)〉 ≡ Cj(ϕ)|ψin〉.

4. For every circuit j, compute the pre-fitness function Pj(ϕ) = −〈ψj(ϕ)|H|ψj(ϕ)〉 and
find the ϕ where the maximum occurs; let’s call it ϕmax.

5. For every circuit j, calculate its fitness Fj ≡ Pj(ϕmax).

6. Eliminate the M circuits with least fitness and keep the remaing M for the next step.

7. Go to step 2.

1These circuits may depend on K continuous variables ϕ ≡ {ϕk}0≤k<K . For example, consider that the
rotation gate may depend on the angle of rotation, and, in general, gates may depend on arbitrary
parameters collectively called ϕ. [Alvarez et al., 2023]

5

QuantumGEP: The Main Algorithm

1. Start with an original population of M circuits generated randomly

2. By gene expression programming mutate and combine the existing size M
population, to generate M′ = 2M new circuits {C(ϕ)}0≤j<M′1

3. For every circuit j, define the ϕ−dependent state |ψj(ϕ)〉 ≡ Cj(ϕ)|ψin〉.
4. For every circuit j, compute the pre-fitness function Pj(ϕ) = −〈ψj(ϕ)|H|ψj(ϕ)〉 and

find the ϕ where the maximum occurs; let’s call it ϕmax.

5. For every circuit j, calculate its fitness Fj ≡ Pj(ϕmax).

6. Eliminate the M circuits with least fitness and keep the remaing M for the next step.

7. Go to step 2.

1These circuits may depend on K continuous variables ϕ ≡ {ϕk}0≤k<K . For example, consider that the
rotation gate may depend on the angle of rotation, and, in general, gates may depend on arbitrary
parameters collectively called ϕ. [Alvarez et al., 2023]

5

QuantumGEP: The Main Algorithm

1. Start with an original population of M circuits generated randomly

2. By gene expression programming mutate and combine the existing size M
population, to generate M′ = 2M new circuits {C(ϕ)}0≤j<M′1

3. For every circuit j, define the ϕ−dependent state |ψj(ϕ)〉 ≡ Cj(ϕ)|ψin〉.
4. For every circuit j, compute the pre-fitness function Pj(ϕ) = −〈ψj(ϕ)|H|ψj(ϕ)〉 and

find the ϕ where the maximum occurs; let’s call it ϕmax.

5. For every circuit j, calculate its fitness Fj ≡ Pj(ϕmax).

6. Eliminate the M circuits with least fitness and keep the remaing M for the next step.

7. Go to step 2.
1These circuits may depend on K continuous variables ϕ ≡ {ϕk}0≤k<K . For example, consider that the
rotation gate may depend on the angle of rotation, and, in general, gates may depend on arbitrary
parameters collectively called ϕ. [Alvarez et al., 2023]

5

Photo by Sincerely Media
https://unsplash.com/photos/O9K5vvTurCY

Mutations may create wrong trees

Here the string is +b*a-aQa and

a mutates to +

+

b ∗

a −

a Q

a

→

+

b ∗

a −

a Q

+

? ?

Wrong syntax!

6

GEP: Unrestricted Mutations

text
q String has fixed size, with
a maximum size head. The
tail contains only leaves.
[Ferreira, 2001]
Yet the coding section size
varies.

q Example. Total Size = 20,
Head Max Size=15, and
+b*a-aQababbabbbabab has 8
coding characters.
+b*a-aQ+babbabbbabab has 10
coding characters.

qMutations preserve the head and tail structure
Here a mutates to +
The syntax is still correct thanks to “junk DNA.”
+b*a-aQababbabbbabab →
+b*a-aQ+babbabbbabab

+

b ∗

a −

a Q

a

→

+

b ∗

a −

a Q

+

b a

7

Results in Condensed Matter

H = Jx
∑

i σ
x
i σ

x
i+1, σx is the Pauli x matrix

Aim: Finding the quantum circuit that
produces the ground state of H from |0000〉

After a few generations we get many
perfect quantum circuits

For example, with fitness 3.9971(6) we find:
Ry0:3π/2 Ry1:π/2 Ry2:3π/2 Ry3:π/2 0 20 40 60 80 100

0

0.5

1

1.5

2

Generation

∆
E

b
or

∆
E

p

Best circuit ∆Eb

Largest ∆Ep in population

0 50 100
0

0.5

1

1.5

·10−2

1Green line: energy difference between the ground state and that yielded by the best individual at that
generation; open circles: largest energy difference within the population at that generation. Inset:
magnification of the figure starting at generation eight. [Alvarez et al., 2023]

8

Input And Output

##Ainur1.0
#This tests GroundState for the XX model on a chain
HeadSize=4;
Population=60;
Generations=20;
NumberOfBits=4;
MinimizerTolerance=0.1;
Primitives="Ry,P";
MinimizerAlgorithm="Simplex";
RunType="GroundState";
Hamiltonian="xx";
HamiltonianCoupling=1;
#HamiltonianIsPeriodic=1;
InVectorFile="../TestSuite/inputs/vector10.txt";

./quantumGep -f ../TestSuite/inputs/input10.ain
Ground State Energy=-3
Ry2:4.445622188 Ry0:0.4704532758 Ry1:1.806751358 Ry0:6.017431122 0 fit 1.43069 0 1 2 3 4 5 6 7 #= 5
Ry0:3.224076586 Ry0:0.2626101643 Ry2:1.900779445 Ry3:4.425218811 0 fit 0.907306 0 1 4 5 8 9 12 13 #= 5
P0 Ry2:2.040787545 Ry1:4.424636695 0 0 fit 0.854915 0 2 4 6 #= 4
Ry2:4.453122188 Ry3:2.070684695 P2 P1 0 fit 0.848304 0 4 8 12 #= 5
...
Ry0:4.871224564 Ry1:1.642748165 Ry2:4.728122188 Ry3:1.706156449 0 fit 2.97288 0 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 #= 5
Ry0:4.871224564 Ry1:1.642748165 Ry2:4.728122188 Ry3:1.706156449 0 fit 2.97288 0 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 #= 59

Results for the Max-Cut Problem

0

1

2

3

4

5

67

0 1

2

3

45

6

7

A solution is given by 248, (binary)
11111000: sites 3 to 7 have down spins and
form the maximal cut; energy equals -9,
fitness 9.

A solution is given by 3 or 7. The number, 3, is binary 00000011: sites 0, 1, have down
spins and form the maximal cut; The other solution is 7, (binary) 00000111: sites 0, 1, and
2 form the maximal cut. Vertices 0, 1, and 2 have been shaded, with vertex 2 shaded more
to indicate that it appears only in the 2nd solution. In all cases energy is -5, fitness 5.2

2Both graphs in [Alvarez et al., 2023] appear also in [Lotshaw et al., 2021]
10

Advanced Features in GEP

(1) Multiple genes (2) Numerical constants

Logical primitives: {And, Not, Or}
Leaves: {a, b, c}; a,b,c∈ {true, false}

01234560123456
ANbbabcAOcaabc

A

N b

b

A

O c

a a

First Gene Second Gene

Primitives: arithm. set; leaf: x
Constants: a=0.298, b=1.083, c=1.466
01234567890120123456789012
+x**x+xabbcae**+x+*xabbcae

+

x ∗

∗ x

+ x

a b

∗

∗ +

x + ∗ x

a b b c

1st Gene 2nd Gene

2Adapted from Figures 5.2 and 3.13 in [Ferreira, 2006].
11

Advanced Features in GEP

(1) Multiple genes (2) Numerical constants

Logical primitives: {And, Not, Or}
Leaves: {a, b, c}; a,b,c∈ {true, false}

01234560123456
ANbbabcAOcaabc

A

N b

b

A

O c

a a

First Gene Second Gene

Primitives: arithm. set; leaf: x
Constants: a=0.298, b=1.083, c=1.466
01234567890120123456789012
+x**x+xabbcae**+x+*xabbcae

+

x ∗

∗ x

+ x

a b

∗

∗ +

x + ∗ x

a b b c

1st Gene 2nd Gene

2Adapted from Figures 5.2 and 3.13 in [Ferreira, 2006].
11

Advanced Features in GEP

(1) Multiple genes (2) Numerical constants

Logical primitives: {And, Not, Or}
Leaves: {a, b, c}; a,b,c∈ {true, false}

01234560123456
ANbbabcAOcaabc

A

N b

b

A

O c

a a

First Gene Second Gene

Primitives: arithm. set; leaf: x
Constants: a=0.298, b=1.083, c=1.466
01234567890120123456789012
+x**x+xabbcae**+x+*xabbcae

+

x ∗

∗ x

+ x

a b

∗

∗ +

x + ∗ x

a b b c

1st Gene 2nd Gene

2Adapted from Figures 5.2 and 3.13 in [Ferreira, 2006].
11

Automatically Defined Functions

q Multiple genes form a chromosome
qAnd multiple chromosomes form a cell

q A cell may produce multiple outputs,
qOr may be controlled by a single output

q ADFs then create a hierarchy

+b*a-aQababbabbbabab

Gene

Chromosome

Cell

12

Photo by ANIRUDH
unsplash.com/photos/YQYacLW8o2U

Summary and Outlook

QuantumGEP…

q yields thousands of quantum circuits for each problem
qAnd they aren’t parametric

q shows success in condensed matter and graph theory
qAnd may work in other domain sciences; arxiv.2303.08203

q has a free and open source license
qAnd development happens in the open

code.ornl.gov/gonzalo_3/evendim
github.com/g1257/evendim

F 8 f

13

Credits

This work was performed at Oak Ridge National Laboratory,
operated by UT-Battelle, LLC under contract

DE-AC05-00OR22725 for the US Department of Energy (DOE).
Support for the work came from the DOE Advanced Scientific

Computing Research (ASCR) Accelerated Research in
Quantum Computing (ARQC) Program under field work

proposal ERKJ354.

F 8 f

Produced with LATEX and the Beamer package
Tikz was used for some figures.

Photo by Jake Belcher; MIT; https://news.mit.edu/2022/alex-greene-quantum-computers-1013.

Photo by Sincerely Media; unsplash.com/photos/O9K5vvTurCY. Photo modified from ANIRUDH unsplash.com/photos/YQYacLW8o2U.

14

References

Alvarez, G., Bennink, R., Irle, S., and Jakowski, J. (2023).
Gene expression programming for quantum computing. arxiv.2303.08203.

Ferreira, C. (2001). Gene expression programming: A new adaptive algorithm for
solving problems. Complex Systems, 13:87–129.

Ferreira, C. (2006). Gene Expression Programming, Mathematical Modeling by an
Artificial Intelligence. Springer Verlag, Berlin, Heidelberg, 2nd ed. edition.

Lotshaw, P. C., Humble, T. S., Herrman, R., Ostrowski, J., and Siopsis, G. (2021).
Empirical performance bounds for quantum approximate optimization. Quantum
Information Processing, 20(12).

14

