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Motivation: FindQuantum Circuits

q Which quantum circuits do we want?
Those that when applied to an initial state yield
the ground state of a Hamiltonian

q Why? In order to use quantum computing in
Condensed Matter, Graph Theory, and Quantum
Chemistry

q QuantumGEP can produce thousands of cir-
cuits, with hundreds correct; it produces non-
parametric circuits
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Gene Expression Programming Overview

Q

+

∗ −

a b c d

Abstract Syntax Tree (AST) for√
a ∗ b + (c − d), with string rep-

resentation Q+*-abcd, operator (or
primitives) in {Q,+,−, ∗}, and leaves
(shaded in the figure) in {a, b, c, d}.
Order is breadth first. No parenthesis!

+

b ∗

a −

a Q

a

Operators here as before, inputs a and b,
expression b+a(a−

√
a).The 20 charac-

ter AST string +b*a-aQababbabbbabab
has a coding region (the first 8) shown
pictorially as an AST.The last 12 are non
coding. [Ferreira, 2006]
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Quantum Circuits in GEP

Example of a 4-bit quantum circuit [Alvarez et al., 2023]

QC Pratictioner’s representation
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QuantumGEP: The Main Algorithm

1. Start with an original population of M circuits generated randomly

2. By gene expression programming mutate and combine the existing size M
population, to generate M′ = 2M new circuits {C(ϕ)}0≤j<M′1

3. For every circuit j, define the ϕ−dependent state |ψj(ϕ)〉 ≡ Cj(ϕ)|ψin〉.
4. For every circuit j, compute the pre-fitness function Pj(ϕ) = −〈ψj(ϕ)|H|ψj(ϕ)〉 and

find the ϕ where the maximum occurs; let’s call it ϕmax.

5. For every circuit j, calculate its fitness Fj ≡ Pj(ϕmax).

6. Eliminate the M circuits with least fitness and keep the remaing M for the next step.

7. Go to step 2.

1These circuits may depend on K continuous variables ϕ ≡ {ϕk}0≤k<K . For example, consider that the
rotation gate may depend on the angle of rotation, and, in general, gates may depend on arbitrary
parameters collectively called ϕ. [Alvarez et al., 2023]
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Photo by Sincerely Media
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Mutations may create wrong trees

Here the string is +b*a-aQa and

a mutates to +

+

b ∗

a −

a Q

a

→

+

b ∗

a −

a Q

+

? ?

Wrong syntax!
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GEP: Unrestricted Mutations

text
q String has fixed size, with
a maximum size head. The
tail contains only leaves.
[Ferreira, 2001]
Yet the coding section size
varies.

q Example. Total Size = 20,
Head Max Size=15, and
+b*a-aQababbabbbabab has 8
coding characters.
+b*a-aQ+babbabbbabab has 10
coding characters.

qMutations preserve the head and tail structure
Here a mutates to +
The syntax is still correct thanks to “junk DNA.”
+b*a-aQababbabbbabab →
+b*a-aQ+babbabbbabab

+

b ∗

a −

a Q

a

→

+

b ∗

a −

a Q

+

b a
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Results in Condensed Matter

H = Jx
∑

i σ
x
i σ

x
i+1, σx is the Pauli x matrix

Aim: Finding the quantum circuit that
produces the ground state of H from |0000〉

After a few generations we get many
perfect quantum circuits

For example, with fitness 3.9971(6) we find:
Ry0:3π/2 Ry1:π/2 Ry2:3π/2 Ry3:π/2 0 20 40 60 80 100
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1Green line: energy difference between the ground state and that yielded by the best individual at that
generation; open circles: largest energy difference within the population at that generation. Inset:
magnification of the figure starting at generation eight. [Alvarez et al., 2023]
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Input And Output

##Ainur1.0
#This tests GroundState for the XX model on a chain
HeadSize=4;
Population=60;
Generations=20;
NumberOfBits=4;
MinimizerTolerance=0.1;
Primitives="Ry,P";
MinimizerAlgorithm="Simplex";
RunType="GroundState";
Hamiltonian="xx";
HamiltonianCoupling=1;
#HamiltonianIsPeriodic=1;
InVectorFile="../TestSuite/inputs/vector10.txt";

./quantumGep -f ../TestSuite/inputs/input10.ain
Ground State Energy=-3
Ry2:4.445622188 Ry0:0.4704532758 Ry1:1.806751358 Ry0:6.017431122 0 fit 1.43069 0 1 2 3 4 5 6 7 #= 5
Ry0:3.224076586 Ry0:0.2626101643 Ry2:1.900779445 Ry3:4.425218811 0 fit 0.907306 0 1 4 5 8 9 12 13 #= 5
P0 Ry2:2.040787545 Ry1:4.424636695 0 0 fit 0.854915 0 2 4 6 #= 4
Ry2:4.453122188 Ry3:2.070684695 P2 P1 0 fit 0.848304 0 4 8 12 #= 5
...
Ry0:4.871224564 Ry1:1.642748165 Ry2:4.728122188 Ry3:1.706156449 0 fit 2.97288 0 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 #= 5
Ry0:4.871224564 Ry1:1.642748165 Ry2:4.728122188 Ry3:1.706156449 0 fit 2.97288 0 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 #= 59



Results for the Max-Cut Problem
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A solution is given by 248, (binary)
11111000: sites 3 to 7 have down spins and
form the maximal cut; energy equals -9,
fitness 9.

A solution is given by 3 or 7. The number, 3, is binary 00000011: sites 0, 1, have down
spins and form the maximal cut; The other solution is 7, (binary) 00000111: sites 0, 1, and
2 form the maximal cut. Vertices 0, 1, and 2 have been shaded, with vertex 2 shaded more
to indicate that it appears only in the 2nd solution. In all cases energy is -5, fitness 5.2

2Both graphs in [Alvarez et al., 2023] appear also in [Lotshaw et al., 2021]
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Advanced Features in GEP

(1) Multiple genes (2) Numerical constants

Logical primitives: {And, Not, Or}
Leaves: {a, b, c}; a,b,c∈ {true, false}

01234560123456
ANbbabcAOcaabc

A

N b

b

A

O c

a a

First Gene Second Gene

Primitives: arithm. set; leaf: x
Constants: a=0.298, b=1.083, c=1.466
01234567890120123456789012
+x**x+xabbcae**+x+*xabbcae

+

x ∗

∗ x

+ x

a b

∗

∗ +

x + ∗ x

a b b c

1st Gene 2nd Gene

2Adapted from Figures 5.2 and 3.13 in [Ferreira, 2006].
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Automatically Defined Functions

q Multiple genes form a chromosome
qAnd multiple chromosomes form a cell

q A cell may produce multiple outputs,
qOr may be controlled by a single output

q ADFs then create a hierarchy

+b*a-aQababbabbbabab

Gene

Chromosome

Cell
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Photo by ANIRUDH
unsplash.com/photos/YQYacLW8o2U

Summary and Outlook

QuantumGEP…

q yields thousands of quantum circuits for each problem
qAnd they aren’t parametric

q shows success in condensed matter and graph theory
qAnd may work in other domain sciences; arxiv.2303.08203

q has a free and open source license
qAnd development happens in the open

code.ornl.gov/gonzalo_3/evendim
github.com/g1257/evendim

F 8 f
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Produced with LATEX and the Beamer package
Tikz was used for some figures.

Photo by Jake Belcher; MIT; https://news.mit.edu/2022/alex-greene-quantum-computers-1013.

Photo by Sincerely Media; unsplash.com/photos/O9K5vvTurCY. Photo modified from ANIRUDH unsplash.com/photos/YQYacLW8o2U.
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