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MERA is a Tensor Network

MERA stands for multiscale entanglement renormalization ansatz [Vidal, 2008]. MERA is the form
of the wavefuction of a quantum problem. This wavefuction belongs to the class of tensor
networks.
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What is MERA?

σ0 σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10σ11 σ12σ13 σ14σ15

A 1D binary MERA ψσ0,σ1,σ2,··· [Evenbly and Vidal, 2009]
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What is MERA?

MERA stands for multiscale entanglement
renormalization ansatz [Vidal, 2008].
MERA is the form of the solution to a
quantum problem. This solution form
belongs to the class of tensor networks. An
algorithm is then applied to obtain the
actual values in the MERA and solve the
problem, and obtain ψσ0,σ1,σ2,···.

What problems? Finding the ground state
of a strongly correlated Hamiltonian,
finding a quantum circuit in quantum
computing, finding the time evolution of a
given quantum state.
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Why MERA for Quantum Materials?

Why MERA? Because MERA can systematically and with bounded errors solve many local
Hamiltonians in any dimensions, overcoming the limitations of the DMRG.
MERA is not just another variational method. It can be rigorously shown that a polynomial-time
truncated MERA tends to the correct solution. And we can estimate the errors made by the
truncation.
Yet in 1D, MERA scaling goes like m,28 where m is the number of states kept, whereas DMRG
goes like m.3 In two dimensions, MERA has polynomial scaling and DMRG exponential scaling,
but MERA today is slower in practice. For dimensions higher than one, we can improve MERA
but not DMRG. To improve MERA, we have a long way to go and tons of work….
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Why MERA at ORNL?

There is a large amount of work to be done for MERA to be usable in condensed matter
problems. This work aligns well with ORNL’s interests and strengths, such as algorithm
developement, software development, use of new computer architectures, use of Summit.
What’s the work that needs to be done?

1 Accelerate tensor-contractions.
2 Implement more geometries: 3D hypercube, triangular.
3 Implement more aries like ternary MERA. Only binary MERA is done.
4 Implement more Models. Only Heisenberg spin 1/2 is done.
5 Make use of local symmetries.
6 Handle fermionic models via “diamond” tensors.
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Entropy of Ground State vs. Entropy of Ansatz

We are going to work with a class C of strongly correlated Hamiltonians that are short-ranged in
some d dimensional geometry and that follow the corrected area law.
The ground state of a Hamiltonian H ∈ C in d has1 the entaglement entropy Sexact

dimension Non-critical Critical

d Ld−1 Ld−1 ln L

The ansatz needs to have enough entropy; else the computation will be exponential.

1A system is critical if it is gapless and d − dΓ = 1, where d is the dimension of the geometry, and dΓ the
dimension of the Fermi surface. See citation at the end.
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Matrix Product States and DMRG

D D2 D3 m m
σ0 σ1 σ2 σ3 σ4 σ5

The entaglement entropy of a MPS of length Ld and bond dimension m is SMPS(Ld ,m) ∝ ln(m).
We match Sexact = Ld−1 ln L = SMPS(Ld ,m) = ln(m), to obtain the m required to simulate a
problem with MPS or DMRG is as follows:

dimension Non-critical Critical

d = 1 constant L
d > 1 exp(Ld−1) LL

d−1
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MERA
The entaglement entropy of MERA2 with length L, dimension
d = 1, and bond dimension m is
SMERA(L, d = 1,m) ∝ ln(L) ln(m). For dimension d > 1
SMERA(L, d ,m) ∝ Ld−1 ln(m). We match Sexact = Ld−1 ln L =
SMERA = Ld−1 ln(m) to obtain the m required to simulate a
problem with MERA. The answer is shown in the table; see
also [Evenbly and Vidal, 2014].

dimension Non-critical Critical

d = 1 — constant
d > 1 constant L

scale invariant MERA
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Finding the Ground State MERA

This slide intentionally left blank.
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Geometries, Aries, and Models

Dimensions: 2d MERA

Aries: Ternary 1d MERA

Heisenberg S = 1/2, t-J Model, Hubbard, …
Models:
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Summary and Outlook

MERA [Vidal, 2008] is a tensor network and the form of the solution to a quantum problem. It
can represent the wavefunction of many quantum Hamiltonians in any dimension.

This talk will be posted at https://g1257.github.io/talks/
Our MERA++ software is at
https://code.ornl.gov/gonzalo_3/merapp/tree/features and at
https://github.com/g1257/merapp
Our ExaTN software is at https://code.ornl.gov/qci/exaTN/

LDRD Collaborators: Eugene Dumitrescu, Dmitry Liakh, Alex McCaskey (PI), and Tiffany Mintz
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Produced with LATEX and the Beamer package
with a custom theme.

Tikz was used for some figures.

Version 1.0 Quantum Materials 2019



14 | Quantum Materials 2019 MERA

References

Evenbly, G. and Vidal, G. (2009).
Algorithms for entanglement renormalization.
Phys. Rev. B, 79:144108.

Evenbly, G. and Vidal, G. (2014).
Scaling of entanglement entropy in the (branching) multiscale entanglement
renormalization ansatz.
Phys. Rev. B, 89:235113.

Vidal, G. (2008).
Class of quantum many-body states that can be efficiently simulated.
Phys. Rev. Lett., 101:110501.

Version 1.0 Quantum Materials 2019


